Lie Algebraic Modeling of Vibrational Frequencies in Hexachlorobenzene: A Symmetry-Adapted Approach for the D₆ₕ Point Group

  • D. Rajani Department of Mathematics, Siddhartha Academy of Higher Education, Deeemed to be University, Vijayawada, Andhra Pradesh, India
  • T. Sreenivas Department of Mathematics, Jawaharlal Nehru Technological University, Kakinada, India; Department of Mathematics, Anil Neerukonda Institute of Technology & Sciences (ANITS), Visakhapatnam, India
  • J. Vijayasekhar Department of Mathematics, GITAM (Deemed to be University), Hyderabad, India https://orcid.org/0000-0002-2745-7401
Keywords: Hexachlorobenzene, Vibrational spectra, Lie algebraic modelling, Symmetry-adapted Hamiltonian, D₆ₕ point group

Abstract

This work uses a symmetry-adapted Lie algebraic framework to study the vibrational frequencies of hexachlorobenzene (C₆Cl₆). A U(2)-based vibrational Hamiltonian captures the fundamental modes and the first and second overtones by exploiting the molecule's D6h point group symmetry. The algebraic approach considers anharmonicity and symmetry constraints to provide a compact and manageable analytical portrayal of the vibrational spectrum. The computed fundamental frequencies agree strongly with the observed values, validating the approach. Moreover, the extension to overtones underlines the algebraic model's capability to evaluate higher-order vibrational excitations in polyatomic molecules systematically. These results confirm the effectiveness of Lie algebraic methods in modelling vibrational features of highly symmetric molecules and serve as a solid basis for further work in molecular spectroscopy.

Downloads

Download data is not yet available.

References

L. Casadó, J.P. Arrebola, A. Fontalba, and A. Muñoz, “Adverse effects of hexachlorobenzene exposure in children and adolescents,” Environ. Res. 176, 108421 (2019). https://doi.org/10.1016/j.envres.2019.03.059

S. Saeki, “The assignment of the molecular vibrations of hexachlorobenzene,” Bull. Chem. Soc. Jpn. 35, 322–328 (1962). https://doi.org/10.1246/bcsj.35.322

R. Kopelman, and O. Schnepp, “Infrared spectrum of hexachlorobenzene,” J. Chem. Phys. 30, 597–598 (1959). https://doi.org/10.1063/1.1730006

X. Zhang, Q. Zhou, Y. Huang, Z. Li, and Z. Zhang, “Contrastive analysis of the Raman spectra of polychlorinated benzene: hexachlorobenzene and benzene,” Sensors, 11, 11510–11515 (2011). https://doi.org/10.3390/s111211510

M.V. Castillo, M.E. Manzur, L. Di Marco, V. Runco, and S.A. Brandán, “Structural and vibrational study of a powerful environmental pollutant agent, the hexachlorobenzene compound,” in: Vibrational Spectroscopy and Structural Characterization, Chap. 7, (2015).

F. Iachello, and S. Oss, “Stretching vibrations of benzene in the algebraic model,” Chem. Phys. Lett. 187, 500–505 (1991). https://doi.org/10.1016/0009-2614(91)80290-E

S. K. Singha, A. Kalyan, R. Sen, and R. Bhattacharjee, “Successful applications of Lie algebraic model to analyze the vibrational spectra of fluorobenzene,” Polycycl. Aromat. Compd. 34, 135–142 (2014). https://doi.org/10.1080/10406638.2013.861497

J. Vijayasekhar, P. Suneetha, and K. Lavanya, “Vibrational spectra of cyclobutane-d8 using symmetry-adapted one-dimensional Lie algebraic framework,” Ukr. J. Phys. Opt. 24, 193–199 (2023). https://doi.org/10.3116/16091833/24/3/193/2023

S. K. Singha, A. Kalyan, R. Sen, and R. Bhattacharjee, “The vibrational spectra of monomer and dimer of benzene: An algebraic approach,” Polycycl. Aromat. Compd. 34, 388–396 (2014). https://doi.org/10.1080/10406638.2014.892891

S. Teppala, and V. Jaliparthi, “Exploring cyclohexane vibrational dynamics through a Lie algebraic Hamiltonian framework,” Ukr. J. Phys. Opt. 25, 03093–03100 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.03093

V. Jaliparthi, and M. R. Balla, “Vibrational Hamiltonian of tetrachloro-, tetrafluoro-, and mono-silanes using U(2) Lie algebras,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 264, 120289 (2022). https://doi.org/10.1016/j.saa.2021.120289

F. Iachello, and S. Oss, “Algebraic methods in quantum mechanics: from molecules to polymers,” Eur. Phys. J. D 19, 307–314 (2002). https://doi.org/10.1140/epjd/e20020089

N.K. Sarkar, J. Choudhury, S.R. Karumuri, and R. Bhattacharjee, “An algebraic approach to the comparative study of the vibrational spectra of monofluoroacetylene (HCCF) and deuterated acetylene (HCCD),” Mol. Phys. 106, 693–702 (2008). https://doi.org/10.1080/00268970801939019

S. Nallagonda, and V. Jaliparthi, “Higher overtone vibrational frequencies in naphthalene using the Lie algebraic technique,” Ukr. J. Phys. Opt. 25, 02080–02085 (2024). https://doi.org/10.3116/16091833/Ukr.J.Phys.Opt.2024.02080

F. Iachello, and R.D. Levine, Algebraic Theory of Molecules, (Oxford University Press, Oxford, 1995).

S. Oss, “Algebraic models in molecular spectroscopy,” Adv. Chem. Phys. 145, 455–469 (2009). https://doi.org/10.1002/9780470141526.ch8

K.K. Irikura, “Erratum: Experimental vibrational zero-point energies: Diatomic molecules, J. Phys. Chem. Ref. Data, 36, 389 397 (2007),” J. Phys. Chem. Ref. Data 38, 749 (2009). https://doi.org/10.1063/1.3167794

Published
2025-12-08
Cited
How to Cite
Rajani, D., Sreenivas, T., & Vijayasekhar, J. (2025). Lie Algebraic Modeling of Vibrational Frequencies in Hexachlorobenzene: A Symmetry-Adapted Approach for the D₆ₕ Point Group. East European Journal of Physics, (4), 512-516. https://doi.org/10.26565/2312-4334-2025-4-52