Вплив позицій донор-акцептор на налаштування ефективних сонячних елементів, сенсибілізованих барвником: DFT/TD-DFT дослідження

  • Ф. Бахрані Лабораторія молекулярної інженерії та обчислювального моделювання, кафедра фізики, Коледж природничих наук, Університет Басри, Басра, Ірак https://orcid.org/0009-0005-4785-0701
  • С. Ресан Лабораторія молекулярної інженерії та обчислювального моделювання, кафедра фізики, Коледж природничих наук, Університет Басри, Басра, Ірак https://orcid.org/0000-0003-4214-1314
  • Р. Хамід Лабораторія молекулярної інженерії та обчислювального моделювання, кафедра фізики, Коледж природничих наук, Університет Басри, Басра, Ірак https://orcid.org/0000-0002-4844-2313
  • М. Аль-Анбер Лабораторія молекулярної інженерії та обчислювального моделювання, кафедра фізики, Коледж природничих наук, Університет Басри, Басра, Ірак https://orcid.org/0000-0001-9093-6811
Ключові слова: D–π–A, TD-DFT, DSSC, фотоелектричні властивості, антрацен

Анотація

Молекулу антрацену було прийнято як π-сполучений місток для системи D–π–A з нітрогрупою CH3 та нітрогрупою NO2, що діють як донорна та акцепторна групи. Вплив антраценового з'єднання з донорною та акцепторною сторонами було оцінено на продуктивність сонячного елемента, сенсибілізованого барвником (DSSC). Положення донора та акцептора в цьому дослідженні змінювалися навколо антрацену. Теорія функціоналу густини (DFT) була використана на рівні теорії B3LYP. Донорна група могла зв'язуватися з антраценом у двох певних місцях, тоді як акцепторна група могла зв'язуватися з рештою антраценових місць, за винятком донорного місця. Були досліджені фотоелектричні та електронні властивості. Результати показали, що молекулярні барвники з найвищими показниками, D10A7, D10A8 та D1A6, придатні для використання як сенсибілізатори завдяки своїм енергетично вигідним фотоелектричним параметрам, які пояснюються потенціалом для інжекції та регенерації електронів.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

S. ElKhattabi, A. Fitri, A.T. Benjelloun, et al. “Theoretical investigation of electronic, optical and photovoltaic properties of alkylamine-based organic dyes as sensitizers for application in DSSCs,” J. Mater. Environ. Sci., 9(3), 93 (2018). https://doi.org/10.26872/JMES.2018.9.3.93

S.A. Mahadik, H. M. Pathan, and S. Salunke-Gawali, “An Overview of Metal Complexes, Metal-Free and Natural Photosensitizers in Dye-Sensitized Solar Cells,”, 24(0), 1078 (2024) https://doi.org/10.30919/ESEE1078

S.H. Kang, S.Y. Jung, Y.W. Kim, Y.K. Eom, and H.K. Kim, “Exploratory synthesis and photovoltaic performance comparison of D–π–A structured Zn-porphyrins for dye-sensitized solar cells,” Dye. Pigment, 149, 341–347 (2018). https://doi.org/10.1016/J.DYEPIG.2017.10.011

L.C.C. Coetzee, A.S. Adeyinka, and N. Magwa, “A theoretical investigation of decorated novel triazoles as DSSCs in PV devices,” J. Mol. Model. 27(12), 1–16 (2021). https://doi.org/10.1007/S00894-021-04975-Y

A. Slimi, A. Fitri, A.T. Benjelloun, et al. “Molecular Design of D-π-A-A Organic Dyes Based on Triphenylamine Derivatives with Various Auxiliary Acceptors for High Performance DSSCs,” J. Electron. Mater. 48(7), 4452–4462 (2019). https://doi.org/10.1007/S11664-019-07228-0

F. Bahrani, R. Hameed, S. Resan, et al. “Impact of Torsion Angles to Tune Efficient Dye-Sensitized Solar Cell/Donor-π-Acceptor Model Containing Triphenylamine: DFT/TD-DFT Study,” AcPPA, 141(6), 561–568 (2022). https://doi.org/10.12693/APHYSPOLA.141.561

F.M. Mustafa, A.A.A. Khalek, A.A. Mahboob, and M.K. Abdel-Latif, “Designing Efficient Metal-Free Dye-Sensitized Solar Cells: A Detailed Computational Study,” Molecules, 28(17), 6177 (2023). https://doi.org/10.3390/MOLECULES28176177

A. Azaid, M. Raftani, M. Alaqarbeh, et al. “New organic dye-sensitized solar cells based on the D–A–π–A structure for efficient DSSCs: DFT/TD-DFT investigations,” RSC Adv. 12(47), 30626 (2022). https://doi.org/10.1039/D2RA05297K

S. Rahman, A. Haleem, M. Siddiq, et al. “Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects,” RSC Adv. 13(28), 19508 (2023). https://doi.org/10.1039/D3RA00903C

F.A. Bulat, J.S. Murray, and P. Politzer, “Identifying the most energetic electrons in a molecule: The highest occupied molecular orbital and the average local ionization energy,” Comput. Theor. Chem. 1199, 113192 (2021). https://doi.org/10.1016/J.COMPTC.2021.113192

B. Li, B. Hou, and G.A.J. Amaratunga, “Indoor photovoltaics, The Next Big Trend in solution-processed solar cells,” InfoMat. 3(5), 445–459 (2021). https://doi.org/10.1002/INF2.12180

M. Harikrishnan, S. Murugesan, and A. Siva, “Novel star-shaped D–π–D–π–D and (D–π)2–D–(π–D)2 anthracene-based hole transporting materials for perovskite solar cells,” Nanoscale Adv. 2(8), 3514–3524 (2020). https://doi.org/10.1039/D0NA00299B

A. Saha, and B. Ganguly, “A DFT study to probe homo-conjugated norbornylogous bridged spacers in dye-sensitized solar cells: An approach to suppressing agglomeration of dye molecules,” RSC Adv. 10(26), 15307–15319 (2020). https://doi.org/10.1039/c9ra10898j

S. Resan, R. Hameed, A. Al-Hilo, and M. Al-Anber, “The Impact of Torsional Angles to Tune the Nonlinear Optical Response of Chalcone Molecule: Quantum Computational Study,” Revista Cubana De FíSica, 37(2), 95–100 (2020).

M. Al-Anber, and S. Resan, “Opto-electronics and nonlinear optical properties of isoindoline-1,3-dione-fullerene20-isoindoline-1,3-dione using density functional theory,” Rev. la Fac. Ciencias, 12(2), 42–63 (2023). https://doi.org/10.15446/REV.FAC.CIENC.V12N2.107224

J. Luo, Z. Wan, C. Jia, Y. Wang, and X. Wu, “A co-sensitized approach to efficiently fill the absorption valley, avoid dye aggregation and reduce the charge recombination,” Electrochim. Acta, 215, 506–514 (2016). https://doi.org/10.1016/J.ELECTACTA.2016.08.072

M. Al-Anber, “Theoretical Semi-empirical Study of the Glycine Molecule Interaction with Fullerene C60,” Orbital Electron. J. Chem. 6(3), 491 (2014). https://doi.org/10.17807/ORBITAL.V6I3.491

M.J. Al-Anber, A.H. Al-Mowali, and A.M. Ali, “Theoretical Semiempirical Study of the Nitrone (Anticancer Drug) Interaction with Fullerene C60 (as Delivery),” Acta Phys. Pol. A, 126(3), 845–848 (2014). https://doi.org/10.12693/APHYSPOLA.126.845

E. Muchuweni, E.T. Mombeshora, B.S. Martincigh, and V.O. Nyamori, “Recent Applications of Carbon Nanotubes in Organic Solar Cells,” Front. Chem. 9, 733552 (2022). https://doi.org/10.3389/FCHEM.2021.733552

M.J. Al-Anber, “Butyric Acid Interaction with Carbon Nanotubes: Modeling by a Semi-Empirical Approach,” Rev. Cuba. Física, 30(2), 72–76 (2013).

F. Tessore, G. Di Carlo, A. Forni, S. Righetto, F. Limosani, and A.O. Biroli, “Second Order Nonlinear Optical Properties of 4-Styrylpyridines Axially Coordinated to A4 ZnII Porphyrins: A Comparative Experimental and Theoretical Investigation,” Inorganics, 8(8), 45 (2020). https://doi.org/10.3390/INORGANICS8080045

A. Mathiyalagan, K. Manimaran, K. Muthu, and M. Rajakantham, “Density functional theory study on the electronic structures and spectral properties of 3,5-Dimethylanisole dye sensitizer for solar cell applications.” Results Chem. 3, 100164 (2021). https://doi.org/10.1016/J.RECHEM.2021.100164

S.R. Bora, and D.J. Kalita, “Tuning the charge transfer and optoelectronic properties of tetrathiafulvalene based organic dye-sensitized solar cells: a theoretical approach,” RSC Adv. 11(62), 39246–39261 (2021). https://doi.org/10.1039/D1RA05887H

M.E. Casida, C. Jamorski, K.C. Casida, and D.R. Salahub, “Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold,” J. Chem. Phys. 108(11), 4439–4449 (1998). https://doi.org/10.1063/1.475855

P.N. Samanta, D. Majumdar, S. Roszak, and J. Leszczynski, “First-Principles Approach for Assessing Cold Electron Injection Efficiency of Dye-Sensitized Solar Cell: Elucidation of Mechanism of Charge Injection and Recombination,” J. Phys. Chem. C, 124(5), 2817–2836 (2020). https://doi.org/10.1021/acs.jpcc.9b10616

B. Miehlich, A. Savin, H. Stoll, and H. Preuss, “Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr,” Chem. Phys. Lett. 157(3), 200–206 (1989). https://doi.org/10.1016/0009-2614(89)87234-3

E. Mosconi, A. Selloni, and F. De Angelis, “Solvent effects on the adsorption geometry and electronic structure of dye-sensitized TiO₂: A first-principles investigation,” J. Phys. Chem. C, 116 (9), 5932–5940 (2012). https://doi.org/10.1021/jp209420h

M.S. Ebied, M. Dongol, M. Ibrahim, M. Nassary, S. Elnobi, and A.A. Abuelwafa, “Effect of carboxylic acid and cyanoacrylic acid as anchoring groups on Coumarin 6 dye for dye-sensitized solar cells: DFT and TD-DFT study,” Struct. Chem. 33(6), 1921 1933 (2022). https://doi.org/10.1007/s11224-022-01957-5

M. Xu, X. Li, Z. Sun, and T. Tu, “Suzuki–Miyaura cross-coupling of bulky anthracenyl carboxylates by using pincer nickel N-heterocyclic carbene complexes: An efficient protocol to access fluorescent anthracene derivatives,” Chem. Commun. 49(98), 11539–11541 (2013). https://doi.org/10.1039/c3cc46663a

G.E. Zervaki, P.A. Angaridis, E.N. Koukaras, G.D. Sharma, and A.G. Coutsolelos, “Dye-sensitized solar cells based on triazine-linked porphyrin dyads containing one or two carboxylic acid anchoring groups,” Inorg. Chem. Front. 1(3), 256–270 (2014). https://doi.org/10.1039/c3qi00095h

A. Siddiqui, N. Islavath, T. Swetha, and S.P. Singh, “D–π–A organic dyes derived from the indacenodithiophene core moiety for efficient dye-sensitized solar cells,”Energy Adv. 2(7), 1045–1050 (2023). https://doi.org/10.1039/d3ya00060e

B. O’Regan, and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO₂ films,” Nature, 353(6346), 737–740 (1991). https://doi.org/10.1038/353737a0

A.K. Biswas, S. Barik, A. Sen, A. Das, and B. Ganguly, “Design of efficient metal-free organic dyes having an azacyclazine scaffold as the donor fragment for dye-sensitized solar cells,” J. Phys. Chem. C, 118(36), 20763–20771 (2014). https://doi.org/10.1021/jp5049953

B. Kippelen, and J.L. Brédas, “Organic photovoltaics,” Energy and Environmental Science, 2(3), 251–261 (2009). https://doi.org/10.1039/b812502n

A.K. Biswas, A. Das, and B. Ganguly, “Can fused-pyrrole rings act as better π-spacer units than fused-thiophene in dye-sensitized solar cells? A computational study,” New J. Chem. 40(11), 9304–9312 (2016). https://doi.org/10.1039/c6nj02040b

R. Hoffmann, “Interaction of Orbitals through Space and through Bonds,” Acc. Chem. Res. 4(1), 1–9 (1971). https://doi.org/10.1021/ar50037a001

R. Nithya, and K. Senthilkumar, “Theoretical studies on the quinoidal thiophene based dyes for dye sensitized solar cell and NLO applications,” Phys. Chem. Chem. Phys. 16(39), 21496–21505 (2014). https://doi.org/10.1039/c4cp02694b

A. Mahmood, S.U.D. Khan, and U.A. Rana, “Theoretical designing of novel heterocyclic azo dyes for dye sensitized solar cells,” J. Comput. Electron. 13(4), 1033–1041 (2014). https://doi.org/10.1007/s10825-014-0628-2

M.A.M. Rashid, D. Hayati, K. Kwak, and J. Hong, “Theoretical investigation of azobenzene-based photochromic dyes for dye-sensitized solar cells,” Nanomaterials, 10(5), 914 (2020). https://doi.org/10.3390/nano10050914

Z. Yang, C. Liu, C. Shao, C. Lin, and Y. Liu, “First-Principles Screening and Design of Novel Triphenylamine-Based D-A Organic Dyes for Highly Efficient Dye-Sensitized Solar Cells,” J. Phys. Chem. C, 119(38), 21852–21859 (2015). https://doi.org/10.1021/acs.jpcc.5b05745

M. Karuppusamy, V. Surya, K. Choutipalli, D. Vijay, and V. Subramanian, “Rational design of novel N-doped polyaromatic hydrocarbons as donors for the perylene based dye-sensitized solar cells,” J. Chem. Sci. (2019), https://doi.org/10.1007/s12039-019-1723-5

H. Assad, R. Ganjoo, and S. Sharma, “A theoretical insight to understand the structures and dynamics of thiazole derivatives,” J. Phys. Conf. Ser. 2267(1), 012063 (2022). https://doi.org/10.1088/1742-6596/2267/1/012063

W. Wang, J. Zhu, Q. Huang, et al. “DFT Exploration of Metal Ion-Ligand Binding: Toward Rational Design of Chelating Agent in Semiconductor Manufacturing,” Molecules, 29(2), 203 (2024). https://doi.org/10.3390/MOLECULES29020308

S. El Mzioui, S.M. Bouzzine, I. Sidir, et al. “Theoretical investigation on π-spacer effect of the D–π–A organic dyes for dye-sensitized solar cell applications: a DFT and TD-BHandH study,” J. Mol. Model. 25(4), 1–12 (2019). https://doi.org/10.1007/s00894-019-3963-1

A.K. Biswas, A. Das, and B. Ganguly, “The influence of noncovalent interactions in metal-free organic dye molecules to augment the efficiency of dye sensitized solar cells: A computational study,” Int. J. Quantum Chem. 117(18), e25415 (2017). https://doi.org/10.1002/qua.25415

M.I. Abdullah, M.R.S.A. Janjua, A. Mahmood, S. Ali, and M. Ali, “Quantum chemical designing of efficient sensitizers for dye sensitized solar cells,” Bull. Korean Chem. Soc. 34(7), 2093–2098 (2013) https://doi.org/10.5012/BKCS.2013.34.7.2093

M. Prakasam, R. Baskar, K. Gnanamoorthi, and K. Annapoorani, “Triphenylamine Based Organic Dyes with Different Spacers for Dye-Sensitized Solar Cells: A First Principle Study,” Int. J. Adv. Sci. Eng. 5(4), 1118–1124 (2019). https://doi.org/10.29294/IJASE.5.4.2019.1118-1124

Y. Li, Y. Li, P. Song, F. Ma, J. Liang, and M. Sun, “Screening and design of high-performance indoline-based dyes for DSSCs,” RSC Adv. 7(33), 20520–20536 (2017). https://doi.org/10.1039/c6ra28396a

C. Sun, Y. Li, P. Song, and F. Ma, “An experimental and theoretical investigation of the electronic structures and photoelectrical properties of ethyl red and carminic acid for DSSC application,” Materials (Basel), 9(10), 813 (2016). https://doi.org/10.3390/ma9100813

M. Xie, F.-Q. Bai, H.-X. Zhang, and Y.-Q. Zheng, “The influence of inner electric field on the performance of three types of Zn-porphyrin sensitizers in dye sensitized solar cells: A theoretical study,” J. Mater. Chem. C, 4, 10130-10145 (2016). https://doi.org/10.1039/C6TC02457B

M. Xie, L. Hao, R. Jia, J. Wang, and F. Q. Bai, “Theoretical study on the influence of electric field direction on the photovoltaic performance of aryl amine organic dyes for dye-sensitized solar cells,” New J. Chem. 43(2), 651–661 (2019)m https://doi.org/10.1039/C8NJ04360D

M. Hachi, S. El Khattabi, A. Fitri, et al. “DFT and TD-DFT studies of the π-bridge influence on the photovoltaic properties of dyes based on thieno[2,3-bindole,” J. Mater. Environ. Sci. 9(4), 1200–1211 (2018).

P.J. Holliman, K.J. Al-Salihi, A. Connell, M.L. Davies, E.W. Jones, and D.A. Worsley, “Development of selective, ultra-fast multiple co-sensitizations to control dye loading in dye-sensitized solar cells,” RSC Adv. 4(5), 2515–2522 (2013). https://doi.org/10.1039/C3RA42131G

E.C. Prima, H.S. Nugroho, Nugraha, G. Refantero, C. Panatarani, and B. Yuliarto, “Performance of the dye-sensitized quasi-solid state solar cell with combined anthocyanin-ruthenium photosensitizer,” RSC Adv. 10(60), 36873–36886 (2020). https://doi.org/10.1039/D0RA06550A

Опубліковано
2025-12-08
Цитовано
Як цитувати
Бахрані, Ф., Ресан, С., Хамід, Р., & Аль-Анбер, М. (2025). Вплив позицій донор-акцептор на налаштування ефективних сонячних елементів, сенсибілізованих барвником: DFT/TD-DFT дослідження. Східно-європейський фізичний журнал, (4), 627-634. https://doi.org/10.26565/2312-4334-2025-4-66
Розділ
Статті