Pushing Efficiency Limits: SCAPS-Based Analysis of GaAs and BAs Solar Cells for Next-Generation Photovoltaics

  • Merad Laarej University of Tlemcen, Faculty of Sciences, Department of Physics, Unity of Research “Materials and Renewable Energies”, Tlemcen, Nouveau Pôle, Mansourah, Algeria https://orcid.org/0000-0003-1753-7528
  • Mama Bouchaour University of Tlemcen, Faculty of Sciences, Department of Physics, Unity of Research “Materials and Renewable Energies”, Tlemcen, Nouveau Pôle, Mansourah, Algeria https://orcid.org/0009-0007-3204-0583
  • Imane Bouazzaoui University of Tlemcen, Faculty of Sciences, Department of Physics, Unity of Research “Materials and Renewable Energies”, Tlemcen, Nouveau Pôle, Mansourah, Algeria
Keywords: GaAs, BAs, Photovoltaic, SCAPS Software, Conversion Efficiency (η)

Abstract

The present study utilizes SCAPS software to simulate and analyze the semiconductor materials gallium arsenide (GaAs) and boron arsenide (BAs) for photovoltaic applications. We outline the methodology, emphasizing critical factors considered during simulation. The performance of solar cells is investigated through quantum efficiency and photovoltaic performance curves. Additionally, the observed trends, key differences between GaAs and BAs, and their implications for advancing high-efficiency solar cells are discussed.

Downloads

Download data is not yet available.

References

M. Tridane, A. Malaoui, and S. Belaaouad, “Numerical Simulation of pin GaAs Photovoltaic Cell Using SCAPS-1D», Biointerface Research in Applied Chemistry, 13(4), 253 (2023). https://doi.org/10.33263/BRIAC133.253

A. Kumar, M.S. Thomas, G. Pareek, A. Jain, and N. Gupta, “Performance Evolution of GaAs-Based Solar Cell Towards 30% Efficiency for Space Applications,” in: 2022 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO), (IEEE, India, 2022), pp. 1 3. https://doi.org/10.1109/5NANO53044.2022.9828955

M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films, 361, 527-532 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1

N. Khoshsirat, N.A.Md. Yunus, “Numerical simulation of CIGS thin film solar cells using SCAPS-1D,” in: 2013 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (CSUDET), (Selangor, Malaysia, 2013), pp. 63-67. https://doi.org/10.1109/CSUDET.2013.6670987

R.M. Wentzcovitch, and M.L. Cohen, “Theory of structural and electronic properties of BAs,” J. Phys. C Solid State Phys. 19(34), 6791 (1986). https://doi.org/10.1088/0022-3719/19/34/016

A. Boudjemline, M.M. Islam, L. Louail, and B. Diawara, “Electronic and optical properties of BAs under pressure,” Phys. B: Condens. Matter, 406(22), 4272‑4277 (2011). https://doi.org/10.1016/j.physb.2011.08.043

K. Bushick, K. Mengle, N. Sanders, and E. Kioupakis, “Band structure and carrier effective masses of boron arsenide: Effects of quasi-particle and spin-orbit coupling corrections,” Appl. Phys. Lett. 114(2), 022101 (2019). https://doi.org/10.1063/1.5062845

A. Saif, “High-Efficiency homojunction GaAs solar cell using InGaP as FSF and AlGaInP as BSF,” Results in Optics, 12, 100454 (2023). https://doi.org/10.1016/j.rio.2023.100454

K. Ajay, M. S. Thomas, P. Gulshan, A. Jain, et N. Gupta, “Performance Evolution of GaAs-Based Solar Cell Towards >30% Efficiency for Space Applications”, IEEE, vol. 1, N° 978, p. 3728 6654. https://doi.org/10.1109/5nano53044.2022.9828955

N. Rono, A.E. Merad, J.K. Kibet, B.S. Martincigh, and V.O. Nyamori, “Optimization of Hole Transport Layer Materials for a Lead-Free Perovskite Solar Cell Based on Formamidinium Tin Iodide,” Energy Technol. 9(12), 2100859 (2021). https://doi.org/10.1002/ente.202100859

S.H. Zyoud, A.H. Zyoud, N.M. Ahmed, R.P. Anupama, S.N. Khan, A.F.I. Abdelkader, and S. Moyad, “Numerical modeling of high conversion efficiency FTO/ZnO/CdS/CZTS/MO thin film-based solar cells: Using SCAPS-1D software,” Crystals, 11(12), 1468 (2021). https://doi.org/10.3390/cryst11121468

J. Shin, G.A. Gamage, Z. Ding, K.E. Chen, F. Tian, X. Qian, J. Zhou, et al., “High ambipolar mobility in cubic boron arsenide,” Science, 377(6604), 437-440 (2022). https://doi.org/10.1126/science.abn4290

P.M. Oza, and N.H. Vasoya, “Modeling and simulation of TiO2/GaAs solar cell using SCAPS”, International Journal of Creative Research Thoughts (IJCRT), 10(12), 2320-2882 (2022). https://www.ijcrt.org/viewfull.php?&p_id=IJCRT2212610

Md.S. Shah, Md.K. Hasan, S.C. Barman, J.A. Bhuiyan, H. Mamur, and M.R. Amin Bhuiyan, “Enhancing PV performance of Al/ZnO/CdS/GaAs/NiO/Au solar cells through diverse layer combinations by SCAPS-1D”, Next Research, 2(1), 100143 (2025). https://doi.org/10.1016/j.nexres.2025.100143

X. Yu, H. He, Y. Hui, H. Wang, X. Zhu, S. Li, and T. Zhu, “Additive engineering for efficient wide-bandgap perovskite solar cells with low open-circuit voltage losses”, Frontiers in Chemistry, 12, (2024). https://doi.org/10.3389/fchem.2024.1441057

F.D. Silva, and D.N. Micha, “High-Efficiency GaAs Solar Cell Optimization by Theoretical Simulation”, in: 34th Symposium on Microelectronics Technology and Devices (SBMicro), (IEEE, Sao-Paulo, Brazil, 2019). https://doi.org/10.1109/SBMicro.2019.8919411

Published
2025-12-08
Cited
How to Cite
Laarej, M., Bouchaour, M., & Bouazzaoui, I. (2025). Pushing Efficiency Limits: SCAPS-Based Analysis of GaAs and BAs Solar Cells for Next-Generation Photovoltaics. East European Journal of Physics, (4), 274-283. https://doi.org/10.26565/2312-4334-2025-4-25