Спектри деяких чарiвних адронiв у нерелятивiстськiй моделi
Анотація
У нерелятивiстських рамках дослiджуються мас-спектри систем cĉ, cc, ccc та ccu. Потенцiал складається з потенцiалу Корнелла разом iз логарифмiчним коригувальним членом, як це запропоновано з ґраткової КХД. Ми аналiзуємо хвильовi стани чармонiю S, P та D, а також хвильовi стани cc дикварка S та P та порiвнюємо їх з iснуючими результатами експериментiв та iнших потенцiйних моделей. Використовуючи кварк-дикваркову модель, ми оцiнили S-хвильовi спектри подвiйно зачарованого барiона Ξ++cc та тричi зачарованого барiона Ωccc. Цi маси порiвнюються з iншими теоретичними дослiдженнями.
Завантаження
Посилання
J.-E. Augustin, et al., “Discovery of a Narrow Resonance in e+e-Annihilation,” Phys. Rev. Lett. 33, 1406 (1974). https://doi.org/10.1103/PhysRevLett.33.1406
J.J. Aubert, et al., “Experimental Observation of a Heavy Particle J,” Phys. Rev. Lett. 33, 1404 (1974). https://doi.org/10.1103/PhysRevLett.33.1404
S. Navas, et al. (Particle Data Group Collaboration), “Review of Particle Physics,” Phys. Rev. D 110, 030001 (2024). https://doi.org/10.1103/PhysRevD.110.030001
E. Braaten, and R. Bruschini, “Exotic hidden-heavy hadrons and where to find them,” Phys. Lett. B 863, 139386 (2025). https://doi.org/10.1016/j.physletb.2025.139386
N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, “The XYZ states: experimental and theoretical status and perspectives,” Phys. Rep. 873, 1 (2020). https://doi.org/10.1016/j.physrep.2020.05.001
C.-Z. Yuan, “Exotic states in the quarkonium sector - status and perspectives,” EPJ Web Conf. 274, 01001 (2022). https://doi.org/10.1051/epjconf/202227401001; arXiv:2211.07217 [hep-ph]. https://arxiv.org/abs/2211.07217v1
L. Maiani, “Charm and hadrons,” Nucl. Phys. B 1012, 116831 (2025). https://doi.org/10.1016/j.nuclphysb.2025.116831
R. Aaij, et al., (LHCb Collaboration), “Observation of the Doubly Charmed Baryon Ξ++cc,” Phys. Rev. Lett. 119, 112001 (2017). https://doi.org/10.1103/PhysRevLett.119.112001
Y.-Q. Chen, and S.-Z. Wu, “Production of triply heavy baryons at LHC,” J. High Energ. Phys. 2011, 144 (2011). https://doi.org/10.1007/JHEP08(2011)144
ALICE Collaboration, “Letter of intent for ALICE 3: A next-generation heavy-ion experiment at the LHC,” arXiv: 2211.02491physics.ins-det, CERN (2022). https://doi.org/10.48550/arXiv.2211.02491
M. Gersabeck, “Introduction to Charm Physics,” PoS FWNP, 001 (2015). https://doi.org/10.22323/1.220.0001; arXiv:1503.00032[hep-ex], https://doi.org/10.48550/arXiv.1503.00032
D.B. Lichtenberg, “Baryon Supermultiplets of SU(6)×O(3) in a Quark-Diquark Model,” Phys. Rev. 178, 2197 (1969). https://doi.org/10.1103/PhysRev.178.2197
R.L. Jaffe, “Exotica,” Phys. Rep. 409, 1 (2005). https://doi.org/http://dx.doi.org/10.1016/j.physrep.2004.11.005
F.Wilczek, “Diquarks as inspiration and as objects,” in: Deserfest: A Celebration of the Life andWorks of Stanley Deser, edited by S. Deser and J.T. Liu, (World Scientific, 2006) pp. 322–338. https://doi.org/10.1142/9789812775344 0007; arXiv:hep-ph/0409168. https://doi.org/10.48550/arXiv.hep-ph/0409168
E. Klempt, and J.-M. Richard, “Baryon spectroscopy,” Rev. Mod. Phys. 82, 1095 (2010). https://doi.org/10.1103/RevModPhys.82.1095
S. Capstick, and W. Roberts, “Quark models of baryon masses and decays,” Prog. Part. Nucl. Phys. 45, S241-S331 (2000). https://doi.org/10.1016/S0146-6410(00)00109-5; arXiv:nucl-th/0008028. https://doi.org/10.48550/arXiv.nucl-th/0008028
E. Santopinto, “Interacting quark-diquark model of baryons,” Phys. Rev. C 72, 022201 (2005). https://doi.org/10.1103/PhysRevC.72.022201; arXiv:hep-ph/0412319. https://doi.org/https://doi.org/10.48550/arXiv.hep-ph/0412319
H. Mutuk, “The status of Ξ++cc baryon: investigating quark–diquark model,” Eur. Phys. J. Plus 137, 10 (2022). https://doi.org/10.1140/epjp/s13360-021-02256-4; arXiv:2112.06205 [hep-ph]. https://doi.org/10.48550/arXiv.2112.06205
Y. Koma, and M. Koma, “Scaling study of the relativistic corrections to the static potential,” in: PoS LAT2009, 122 (2009). https://doi.org/10.22323/1.091.0122; arXiv:0911.3204 [hep-lat]. https://doi.org/10.48550/arXiv.0911.3204
Y. Koma, M. Koma, and H. Wittig, “Relativistic corrections to the static potential at O(1/m) and O(1/m2),” in: PoS LAT2007, 111 (2007). https://doi.org/10.22323/1.042.0111; arXiv:0711.2322 [hep-lat]. https://arxiv.org/abs/0711.2322
T. Kawanai, and S. Sasaki, “Potential description of the charmonium from lattice QCD,” AIP Conf. Proc. 1701, 050022 (2016). https://doi.org/10.1063/1.4938662; arXiv:1503.05752 [hep-lat]. https://doi.org/10.48550/arXiv.1503.05752
A. Laschka, N. Kaiser, and W. Weise, “Quark-antiquark potential to order 1/m and heavy quark masses,” Phys. Rev. D, 83, 094002 (2011). https://doi.org/10.1103/PhysRevD.83.094002
A. Laschka, N. Kaiser, and W. Weise, “Charmonium potentials: Matching perturbative and lattice QCD,” Phys. Lett. B, 715, 190-193 (2012). https://doi.org/10.1016/j.physletb.2012.07.049
G. Perez-Nadal, and J. Soto, “Effective-string-theory constraints on the long-distance behavior of the subleading potentials,” Phys.Rev. D, 79, 114002 (2009). https://doi.org/10.1103/PhysRevD.79.114002
T.S. Nayana, and A. Bhaghyesh, “Spectra and decay properties of higher lying BC meson states,” Int. J. Mod. Phys. A, 39, 2450101 (2024). https://doi.org/10.1142/S0217751X2450101X; arXiv:2405.12691 [hep-ph]. https://arxiv.org/abs/2405.12691
P. Lundhammar, and T. Ohlsson, “Nonrelativistic model of tetraquarks and predictions for their masses from fits to charmed and bottom meson data,” Phys. Rev. D 102, 054018 (2020). https://doi.org/10.1103/PhysRevD.102.054018
N.R. Soni, B.R. Joshi, R.P. Shah, H.R. Chauhan, and J.N. Pandya, “QǬQ(Q{b,c}) spectroscopy using the Cornell potential,” Eur. Phys. J. C, 78, 592 (2018). https://doi.org/10.1140/epjc/s10052-018-6068-6; arXiv:1707.07144 [hep-ph]. https://arxiv.org/abs/1707.07144
D. Ebert, R.N. Faustov, and V.O. Galkin, “Properties of heavy quarkonia and Bc mesons in the relativistic quark model,” Phys. Rev. D, 67, 014027 (2003). https://doi.org/10.1103/PhysRevD.67.014027
W. Lucha, and F.F. Schoberl, “Solving the Schroedinger equation for bound states with Mathematica 3.0,” Int. J. Mod. Phys. C, 10, 607 (1999). https://doi.org/10.1142/S0129183199000450; arXiv:hep-ph/9811453. https://arxiv.org/abs/hep-ph/9811453
W. Lucha, F.F. Schoberl, and D. Gromes, “Bound states of quarks”, Phys. Rept. 200, 127-240 (1991). https://doi.org/10.1016/0370-1573(91)90001-3
T. Barnes, S. Godfrey, and E.S. Swanson, “Higher charmonia”, Phys.Rev. D, 72, 054026 (2005). https://doi.org/10.1103/PhysRevD.72.054026; arXiv:hep-ph/0505002. https://arxiv.org/abs/hep-ph/0505002
V.R. Debastiani, and F.S. Navarra, “A non-relativistic model for the [cc] [ĉĉ] tetraquark,” Chin. Phys. C, 43, 013105 (2019). https://doi.org/10.1088/1674-1137/43/1/013105; arXiv:1706.07553 [hep-ph]. https://arxiv.org/abs/1706.07553
H. Mutuk, “Nonrelativistic treatment of fully-heavy tetraquarks as diquark-antidiquark states,” Eur. Phys. J. C, 81, 367 (2021). https://doi.org/10.1140/epjc/s10052-021-09176-8; arXiv:2104.11823 [hep-ph]. https://arxiv.org/abs/2104.11823
A.M. Badalian, B.L.G. Bakker, and I.V. Danilkin, “The S-D mixing and dielectron widths of higher charmonium 1−− states,” Phys. Atom. Nucl. 72, 638-646 (2009). https://doi.org/10.1134/S1063778809040085; arXiv:0805.2291 [hep-ph]. https://arxiv.org/abs/0805.2291
Z.-L. Man, C.-R. Shu, Y.-R. Liu, and H. Chen, “Charmonium states in a coupled-channel model,” Eur. Phys. J. C, 84, 810 (2024). https://doi.org/10.1140/epjc/s10052-024-13132-7; arXiv:2402.02765 [hep-ph]. https://arxiv.org/abs/2402.02765
R. Chaturvedi, and A.K. Rai, “Mass spectra and decay properties of the cĉ meson,” Eur. Phys. J. Plus, 133, 220 (2018). https://doi.org/10.1140/epjp/i2018-12044-8
D. Ebert, R.N. Faustov, and V.O. Galkin, “Spectroscopy and Regge trajectories of heavy quarkonia and Bc mesons,” Eur. Phys. J. C, 71, 1825 (2011). https://doi.org/10.1140/epjc/s10052-011-1825-9; arXiv:1111.0454 [hep-ph]. https://arxiv.org/abs/1111.0454
M.A. Sultan, N. Akbar, B. Masud, and F. Akram, “Higher hybrid charmonia in an extended potential model,” Phys. Rev. D, 90, 054001 (2014). https://doi.org/10.1103/PhysRevD.90.054001
Z.-H. Wang, and G.-L. Wang, “Two-body strong decays of the 2P and 3P charmonium states,” Phys. Rev. D, 106, 054037 (2022). https://doi.org/10.1103/PhysRevD.106.054037; arXiv:2204.08236 [hep-ph]. https://arxiv.org/abs/2204.08236
L.-C. Gui, L.-S. Lu, Q.-F. L¨u, X.-H. Zhong, and Q. Zhao, “Strong decays of higher charmonium states into open-charm meson pairs,” Phys. Rev. D, 98, 016010 (2018). https://doi.org/10.1103/PhysRevD.98.016010; arXiv:1801.08791 [hep-ph]. https://arxiv.org/abs/1801.08791
B. Wang, H. Xu, X. Liu, D.-Y. Chen, S. Coito, and E. Eichten, “Using X(3823) → J/ψπ+π- to identify coupled-channel effects,” Front. Phys. (Beijing) 11, 111402 (2016). https://doi.org/10.1007/s11467-016-0564-7; arXiv:1507.07985 [hep-ph]. https://arxiv.org/abs/1507.07985
G.-J. Ding, J.-J. Zhu, and M.-L. Yan, “Canonical Charmonium Interpretation for Y(4360) and Y(4660),” Phys. Rev. D, 77, 014033 (2008). https://doi.org/10.1103/PhysRevD.77.014033; arXiv:0708.3712 [hep-ph]. https://arxiv.org/abs/0708.3712
G.L. Yu, and Z.G. Wang, “Analysis of the X(3842) as a D-wave charmonium meson”, Int. J. Mod. Phys. A, 34, 1950151 (2019). https://doi.org/10.1142/S0217751X19501513; arXiv:1907.00341 [hep-ph]. https://arxiv.org/abs/1907.00341
K. Raghavendra, and A. Bhaghyesh, “Mass spectra of charmed hadrons in a screened potential model,” Phys. Scr. 100, 075303 (2025). https://doi.org/10.1088/1402-4896/add663
L. Gutierrez-Guerrero, J. Alfaro, and A. Raya, “Mass spectra of one or two heavy quark mesons and diquarks within a nonrelativistic potential model,” Int. J. Mod. Phy. A 36, 2150171 (2021). https://doi.org/10.1142/S0217751X21501712
D. Ebert, R. Faustov, V. Galkin, and A. Martynenko, “Mass spectra of doubly heavy baryons in the relativistic quark model,” Phys.Rev. D, 66, 014008 (2002). https://doi.org/10.1103/PhysRevD.66.014008
Z. Shah, and A.K. Rai, “Excited state mass spectra of doubly heavy Ξ baryons,” Eur. Phys. J. C, 77, 129 (2017). https://doi.org/10.1140/epjc/s10052-017-4688-x; arXiv:1702.02726 [hep-ph]. https://arxiv.org/abs/1702.02726
Y. Yamaguchi, S. Ohkoda, A. Hosaka, T. Hyodo, and S. Yasui, “Heavy quark symmetry in multihadron systems,” Phys. Rev. D, 91, 034034 (2015). https://doi.org/10.1103/PhysRevD.91.034034; arXiv:1402.5222 [hep-ph]. https://arxiv.org/abs/1402.5222
Z.S. Brown, W. Detmold, S. Meinel, and K. Orginos, “Charmed bottom baryon spectroscopy from lattice QCD,” Phys. Rev. D, 90, 094507 (2014). https://doi.org/10.1103/PhysRevD.90.094507
K. Can, G. Erkol, M. Oka, and T. Takahashi, “Look inside charmed-strange baryons from lattice QCD,” Phys. Rev. D, 92, 114515 (2015). https://doi.org/10.1103/PhysRevD.92.114515
Y. Namekawa, S. Aoki, K.-I. Ishikawa, N. Ishizuka, K. Kanaya, Y. Kuramashi, M. Okawa, Y. Taniguchi, et al., (PACS-CS Collaboration), “Charmed baryons at the physical point in 2+1 flavor lattice QCD,” Phys. Rev. D, 87, 094512 (2013). https://doi.org/10.1103/PhysRevD.87.094512
R.A. Brice˜no, H.-W. Lin, and D.R. Bolton, “Charmed-baryon spectroscopy from lattice QCD with Nf=2+1+1 flavors”, Phys. Rev. D, 86, 094504 (2012). https://doi.org/10.1103/PhysRevD.86.094504
C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, and G. Koutsou, “Baryon spectrum with Nf=2+1+1 twisted mass fermions,” Phys. Rev. D, 90, 074501 (2014). https://doi.org/10.1103/PhysRevD.90.074501
Z. Shah, and A.K. Rai, “Masses and Regge trajectories of triply heavy Ωccc and Ωbbb baryons,” Eur. Phys. J. A, 53, 195 (2017). https://doi.org/10.1140/epja/i2017-12386-2
W. Roberts, and M. Pervin, “Heavy baryons in a quark model,” Int. J. Mod. Phys. A, 23, 2817 (2008). https://doi.org/10.1142/S0217751X08041219; arXiv:0711.2492 [nucl-th]. https://arxiv.org/abs/0711.2492
A. Bernotas, and V. Simonis, “Heavy hadron spectroscopy and the bag model,” Lith. J. Phys. 49, 19 (2009). https://doi.org/10.3952/lithjphys.49110; arXiv:0808.1220 [hep-ph]. https://arxiv.org/abs/0808.1220
J.M. Flynn, E. Hern´andez, and J. Nieves, “Triply heavy baryons and heavy quark spin symmetry,” Phys. Rev. D, 85, 014012 (2012). https://doi.org/10.1103/PhysRevD.85.014012
J.-R. Zhang, and M.-Q. Huang, “Deciphering triply heavy baryons in terms of QCD sum rules,” Phys. Lett. B, 674, 28 (2009). https://doi.org/10.1016/j.physletb.2009.02.056; arXiv:0902.3297 [hep-ph]. https://arxiv.org/abs/0902.3297
A. P. Martynenko, “Ground-state triply and doubly heavy baryons in a relativistic three-quark model,” Phys. Lett. B, 663, 317 (2008). https://doi.org/10.1016/j.physletb.2008.04.030; arXiv:0708.2033 [hep-ph]. https://arxiv.org/abs/0708.2033
K. Thakkar, A. Majethiya, and P.C. Vinodkumar, “Magnetic moments of baryons containing all heavy quarks in the quarkdiquark model,” Eur. Phys. J. Plus, 131, 339 (2016). https://doi.org/10.1140/epjp/i2016-16339-4; arXiv:1609.05444 [hep-ph]. https://arxiv.org/abs/1609.05444
Авторське право (c) 2025 Т. Харша, Чайтанья Анiл Бокаде, Рагхавендра Каушал, Бхаг’єш

Цю роботу ліцензовано за Міжнародня ліцензія Creative Commons Attribution 4.0.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).



