Spectra of Some Charmed Hadrons in a Non Relativistic Model

  • T. Harsha Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India https://orcid.org/0009-0006-4872-3947
  • Chaitanya Anil Bokade Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India https://orcid.org/0009-0007-5463-6812
  • Raghavendra Kaushal Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India https://orcid.org/0009-0000-9014-534X
  • Bhaghyesh Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India https://orcid.org/0000-0003-3994-9945
Keywords: Non-relativistic potential model, LQCD corrections, Charmed hadrons, Diquark-quark model, Mass spectrum

Abstract

In a non-relativistic framework the mass spectra of , cc, ccc and ccu systems are investigated. The potential consists of the Cornell potential along with a logarithmic correction term as suggested from lattice QCD. We analyze the S, P, and D wave charmonium states and, S and P wave cc diquark states and have compared them with existing results from experiments and other potential models. Using the quark-diquark model, we have evaluated the S-wave spectra of doubly charmed baryon Ξ++cc and the triply charmed baryon Ωccc. These masses are compared with other theoretical studies.

Downloads

Download data is not yet available.

References

J.-E. Augustin, et al., “Discovery of a Narrow Resonance in e+e-Annihilation,” Phys. Rev. Lett. 33, 1406 (1974). https://doi.org/10.1103/PhysRevLett.33.1406

J.J. Aubert, et al., “Experimental Observation of a Heavy Particle J,” Phys. Rev. Lett. 33, 1404 (1974). https://doi.org/10.1103/PhysRevLett.33.1404

S. Navas, et al. (Particle Data Group Collaboration), “Review of Particle Physics,” Phys. Rev. D 110, 030001 (2024). https://doi.org/10.1103/PhysRevD.110.030001

E. Braaten, and R. Bruschini, “Exotic hidden-heavy hadrons and where to find them,” Phys. Lett. B 863, 139386 (2025). https://doi.org/10.1016/j.physletb.2025.139386

N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, “The XYZ states: experimental and theoretical status and perspectives,” Phys. Rep. 873, 1 (2020). https://doi.org/10.1016/j.physrep.2020.05.001

C.-Z. Yuan, “Exotic states in the quarkonium sector - status and perspectives,” EPJ Web Conf. 274, 01001 (2022). https://doi.org/10.1051/epjconf/202227401001; arXiv:2211.07217 [hep-ph]. https://arxiv.org/abs/2211.07217v1

L. Maiani, “Charm and hadrons,” Nucl. Phys. B 1012, 116831 (2025). https://doi.org/10.1016/j.nuclphysb.2025.116831

R. Aaij, et al., (LHCb Collaboration), “Observation of the Doubly Charmed Baryon Ξ++cc,” Phys. Rev. Lett. 119, 112001 (2017). https://doi.org/10.1103/PhysRevLett.119.112001

Y.-Q. Chen, and S.-Z. Wu, “Production of triply heavy baryons at LHC,” J. High Energ. Phys. 2011, 144 (2011). https://doi.org/10.1007/JHEP08(2011)144

ALICE Collaboration, “Letter of intent for ALICE 3: A next-generation heavy-ion experiment at the LHC,” arXiv: 2211.02491physics.ins-det, CERN (2022). https://doi.org/10.48550/arXiv.2211.02491

M. Gersabeck, “Introduction to Charm Physics,” PoS FWNP, 001 (2015). https://doi.org/10.22323/1.220.0001; arXiv:1503.00032[hep-ex], https://doi.org/10.48550/arXiv.1503.00032

D.B. Lichtenberg, “Baryon Supermultiplets of SU(6)×O(3) in a Quark-Diquark Model,” Phys. Rev. 178, 2197 (1969). https://doi.org/10.1103/PhysRev.178.2197

R.L. Jaffe, “Exotica,” Phys. Rep. 409, 1 (2005). https://doi.org/http://dx.doi.org/10.1016/j.physrep.2004.11.005

F.Wilczek, “Diquarks as inspiration and as objects,” in: Deserfest: A Celebration of the Life andWorks of Stanley Deser, edited by S. Deser and J.T. Liu, (World Scientific, 2006) pp. 322–338. https://doi.org/10.1142/9789812775344 0007; arXiv:hep-ph/0409168. https://doi.org/10.48550/arXiv.hep-ph/0409168

E. Klempt, and J.-M. Richard, “Baryon spectroscopy,” Rev. Mod. Phys. 82, 1095 (2010). https://doi.org/10.1103/RevModPhys.82.1095

S. Capstick, and W. Roberts, “Quark models of baryon masses and decays,” Prog. Part. Nucl. Phys. 45, S241-S331 (2000). https://doi.org/10.1016/S0146-6410(00)00109-5; arXiv:nucl-th/0008028. https://doi.org/10.48550/arXiv.nucl-th/0008028

E. Santopinto, “Interacting quark-diquark model of baryons,” Phys. Rev. C 72, 022201 (2005). https://doi.org/10.1103/PhysRevC.72.022201; arXiv:hep-ph/0412319. https://doi.org/https://doi.org/10.48550/arXiv.hep-ph/0412319

H. Mutuk, “The status of Ξ++cc baryon: investigating quark–diquark model,” Eur. Phys. J. Plus 137, 10 (2022). https://doi.org/10.1140/epjp/s13360-021-02256-4; arXiv:2112.06205 [hep-ph]. https://doi.org/10.48550/arXiv.2112.06205

Y. Koma, and M. Koma, “Scaling study of the relativistic corrections to the static potential,” in: PoS LAT2009, 122 (2009). https://doi.org/10.22323/1.091.0122; arXiv:0911.3204 [hep-lat]. https://doi.org/10.48550/arXiv.0911.3204

Y. Koma, M. Koma, and H. Wittig, “Relativistic corrections to the static potential at O(1/m) and O(1/m2),” in: PoS LAT2007, 111 (2007). https://doi.org/10.22323/1.042.0111; arXiv:0711.2322 [hep-lat]. https://arxiv.org/abs/0711.2322

T. Kawanai, and S. Sasaki, “Potential description of the charmonium from lattice QCD,” AIP Conf. Proc. 1701, 050022 (2016). https://doi.org/10.1063/1.4938662; arXiv:1503.05752 [hep-lat]. https://doi.org/10.48550/arXiv.1503.05752

A. Laschka, N. Kaiser, and W. Weise, “Quark-antiquark potential to order 1/m and heavy quark masses,” Phys. Rev. D, 83, 094002 (2011). https://doi.org/10.1103/PhysRevD.83.094002

A. Laschka, N. Kaiser, and W. Weise, “Charmonium potentials: Matching perturbative and lattice QCD,” Phys. Lett. B, 715, 190-193 (2012). https://doi.org/10.1016/j.physletb.2012.07.049

G. Perez-Nadal, and J. Soto, “Effective-string-theory constraints on the long-distance behavior of the subleading potentials,” Phys.Rev. D, 79, 114002 (2009). https://doi.org/10.1103/PhysRevD.79.114002

T.S. Nayana, and A. Bhaghyesh, “Spectra and decay properties of higher lying BC meson states,” Int. J. Mod. Phys. A, 39, 2450101 (2024). https://doi.org/10.1142/S0217751X2450101X; arXiv:2405.12691 [hep-ph]. https://arxiv.org/abs/2405.12691

P. Lundhammar, and T. Ohlsson, “Nonrelativistic model of tetraquarks and predictions for their masses from fits to charmed and bottom meson data,” Phys. Rev. D 102, 054018 (2020). https://doi.org/10.1103/PhysRevD.102.054018

N.R. Soni, B.R. Joshi, R.P. Shah, H.R. Chauhan, and J.N. Pandya, “QǬQ(Q{b,c}) spectroscopy using the Cornell potential,” Eur. Phys. J. C, 78, 592 (2018). https://doi.org/10.1140/epjc/s10052-018-6068-6; arXiv:1707.07144 [hep-ph]. https://arxiv.org/abs/1707.07144

D. Ebert, R.N. Faustov, and V.O. Galkin, “Properties of heavy quarkonia and Bc mesons in the relativistic quark model,” Phys. Rev. D, 67, 014027 (2003). https://doi.org/10.1103/PhysRevD.67.014027

W. Lucha, and F.F. Schoberl, “Solving the Schroedinger equation for bound states with Mathematica 3.0,” Int. J. Mod. Phys. C, 10, 607 (1999). https://doi.org/10.1142/S0129183199000450; arXiv:hep-ph/9811453. https://arxiv.org/abs/hep-ph/9811453

W. Lucha, F.F. Schoberl, and D. Gromes, “Bound states of quarks”, Phys. Rept. 200, 127-240 (1991). https://doi.org/10.1016/0370-1573(91)90001-3

T. Barnes, S. Godfrey, and E.S. Swanson, “Higher charmonia”, Phys.Rev. D, 72, 054026 (2005). https://doi.org/10.1103/PhysRevD.72.054026; arXiv:hep-ph/0505002. https://arxiv.org/abs/hep-ph/0505002

V.R. Debastiani, and F.S. Navarra, “A non-relativistic model for the [cc] [ĉĉ] tetraquark,” Chin. Phys. C, 43, 013105 (2019). https://doi.org/10.1088/1674-1137/43/1/013105; arXiv:1706.07553 [hep-ph]. https://arxiv.org/abs/1706.07553

H. Mutuk, “Nonrelativistic treatment of fully-heavy tetraquarks as diquark-antidiquark states,” Eur. Phys. J. C, 81, 367 (2021). https://doi.org/10.1140/epjc/s10052-021-09176-8; arXiv:2104.11823 [hep-ph]. https://arxiv.org/abs/2104.11823

A.M. Badalian, B.L.G. Bakker, and I.V. Danilkin, “The S-D mixing and dielectron widths of higher charmonium 1−− states,” Phys. Atom. Nucl. 72, 638-646 (2009). https://doi.org/10.1134/S1063778809040085; arXiv:0805.2291 [hep-ph]. https://arxiv.org/abs/0805.2291

Z.-L. Man, C.-R. Shu, Y.-R. Liu, and H. Chen, “Charmonium states in a coupled-channel model,” Eur. Phys. J. C, 84, 810 (2024). https://doi.org/10.1140/epjc/s10052-024-13132-7; arXiv:2402.02765 [hep-ph]. https://arxiv.org/abs/2402.02765

R. Chaturvedi, and A.K. Rai, “Mass spectra and decay properties of the cĉ meson,” Eur. Phys. J. Plus, 133, 220 (2018). https://doi.org/10.1140/epjp/i2018-12044-8

D. Ebert, R.N. Faustov, and V.O. Galkin, “Spectroscopy and Regge trajectories of heavy quarkonia and Bc mesons,” Eur. Phys. J. C, 71, 1825 (2011). https://doi.org/10.1140/epjc/s10052-011-1825-9; arXiv:1111.0454 [hep-ph]. https://arxiv.org/abs/1111.0454

M.A. Sultan, N. Akbar, B. Masud, and F. Akram, “Higher hybrid charmonia in an extended potential model,” Phys. Rev. D, 90, 054001 (2014). https://doi.org/10.1103/PhysRevD.90.054001

Z.-H. Wang, and G.-L. Wang, “Two-body strong decays of the 2P and 3P charmonium states,” Phys. Rev. D, 106, 054037 (2022). https://doi.org/10.1103/PhysRevD.106.054037; arXiv:2204.08236 [hep-ph]. https://arxiv.org/abs/2204.08236

L.-C. Gui, L.-S. Lu, Q.-F. L¨u, X.-H. Zhong, and Q. Zhao, “Strong decays of higher charmonium states into open-charm meson pairs,” Phys. Rev. D, 98, 016010 (2018). https://doi.org/10.1103/PhysRevD.98.016010; arXiv:1801.08791 [hep-ph]. https://arxiv.org/abs/1801.08791

B. Wang, H. Xu, X. Liu, D.-Y. Chen, S. Coito, and E. Eichten, “Using X(3823) → J/ψπ+π- to identify coupled-channel effects,” Front. Phys. (Beijing) 11, 111402 (2016). https://doi.org/10.1007/s11467-016-0564-7; arXiv:1507.07985 [hep-ph]. https://arxiv.org/abs/1507.07985

G.-J. Ding, J.-J. Zhu, and M.-L. Yan, “Canonical Charmonium Interpretation for Y(4360) and Y(4660),” Phys. Rev. D, 77, 014033 (2008). https://doi.org/10.1103/PhysRevD.77.014033; arXiv:0708.3712 [hep-ph]. https://arxiv.org/abs/0708.3712

G.L. Yu, and Z.G. Wang, “Analysis of the X(3842) as a D-wave charmonium meson”, Int. J. Mod. Phys. A, 34, 1950151 (2019). https://doi.org/10.1142/S0217751X19501513; arXiv:1907.00341 [hep-ph]. https://arxiv.org/abs/1907.00341

K. Raghavendra, and A. Bhaghyesh, “Mass spectra of charmed hadrons in a screened potential model,” Phys. Scr. 100, 075303 (2025). https://doi.org/10.1088/1402-4896/add663

L. Gutierrez-Guerrero, J. Alfaro, and A. Raya, “Mass spectra of one or two heavy quark mesons and diquarks within a nonrelativistic potential model,” Int. J. Mod. Phy. A 36, 2150171 (2021). https://doi.org/10.1142/S0217751X21501712

D. Ebert, R. Faustov, V. Galkin, and A. Martynenko, “Mass spectra of doubly heavy baryons in the relativistic quark model,” Phys.Rev. D, 66, 014008 (2002). https://doi.org/10.1103/PhysRevD.66.014008

Z. Shah, and A.K. Rai, “Excited state mass spectra of doubly heavy Ξ baryons,” Eur. Phys. J. C, 77, 129 (2017). https://doi.org/10.1140/epjc/s10052-017-4688-x; arXiv:1702.02726 [hep-ph]. https://arxiv.org/abs/1702.02726

Y. Yamaguchi, S. Ohkoda, A. Hosaka, T. Hyodo, and S. Yasui, “Heavy quark symmetry in multihadron systems,” Phys. Rev. D, 91, 034034 (2015). https://doi.org/10.1103/PhysRevD.91.034034; arXiv:1402.5222 [hep-ph]. https://arxiv.org/abs/1402.5222

Z.S. Brown, W. Detmold, S. Meinel, and K. Orginos, “Charmed bottom baryon spectroscopy from lattice QCD,” Phys. Rev. D, 90, 094507 (2014). https://doi.org/10.1103/PhysRevD.90.094507

K. Can, G. Erkol, M. Oka, and T. Takahashi, “Look inside charmed-strange baryons from lattice QCD,” Phys. Rev. D, 92, 114515 (2015). https://doi.org/10.1103/PhysRevD.92.114515

Y. Namekawa, S. Aoki, K.-I. Ishikawa, N. Ishizuka, K. Kanaya, Y. Kuramashi, M. Okawa, Y. Taniguchi, et al., (PACS-CS Collaboration), “Charmed baryons at the physical point in 2+1 flavor lattice QCD,” Phys. Rev. D, 87, 094512 (2013). https://doi.org/10.1103/PhysRevD.87.094512

R.A. Brice˜no, H.-W. Lin, and D.R. Bolton, “Charmed-baryon spectroscopy from lattice QCD with Nf=2+1+1 flavors”, Phys. Rev. D, 86, 094504 (2012). https://doi.org/10.1103/PhysRevD.86.094504

C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis, and G. Koutsou, “Baryon spectrum with Nf=2+1+1 twisted mass fermions,” Phys. Rev. D, 90, 074501 (2014). https://doi.org/10.1103/PhysRevD.90.074501

Z. Shah, and A.K. Rai, “Masses and Regge trajectories of triply heavy Ωccc and Ωbbb baryons,” Eur. Phys. J. A, 53, 195 (2017). https://doi.org/10.1140/epja/i2017-12386-2

W. Roberts, and M. Pervin, “Heavy baryons in a quark model,” Int. J. Mod. Phys. A, 23, 2817 (2008). https://doi.org/10.1142/S0217751X08041219; arXiv:0711.2492 [nucl-th]. https://arxiv.org/abs/0711.2492

A. Bernotas, and V. Simonis, “Heavy hadron spectroscopy and the bag model,” Lith. J. Phys. 49, 19 (2009). https://doi.org/10.3952/lithjphys.49110; arXiv:0808.1220 [hep-ph]. https://arxiv.org/abs/0808.1220

J.M. Flynn, E. Hern´andez, and J. Nieves, “Triply heavy baryons and heavy quark spin symmetry,” Phys. Rev. D, 85, 014012 (2012). https://doi.org/10.1103/PhysRevD.85.014012

J.-R. Zhang, and M.-Q. Huang, “Deciphering triply heavy baryons in terms of QCD sum rules,” Phys. Lett. B, 674, 28 (2009). https://doi.org/10.1016/j.physletb.2009.02.056; arXiv:0902.3297 [hep-ph]. https://arxiv.org/abs/0902.3297

A. P. Martynenko, “Ground-state triply and doubly heavy baryons in a relativistic three-quark model,” Phys. Lett. B, 663, 317 (2008). https://doi.org/10.1016/j.physletb.2008.04.030; arXiv:0708.2033 [hep-ph]. https://arxiv.org/abs/0708.2033

K. Thakkar, A. Majethiya, and P.C. Vinodkumar, “Magnetic moments of baryons containing all heavy quarks in the quarkdiquark model,” Eur. Phys. J. Plus, 131, 339 (2016). https://doi.org/10.1140/epjp/i2016-16339-4; arXiv:1609.05444 [hep-ph]. https://arxiv.org/abs/1609.05444

Published
2025-09-08
Cited
How to Cite
Harsha, T., Anil Bokade, C., Kaushal, R., & Bhaghyesh. (2025). Spectra of Some Charmed Hadrons in a Non Relativistic Model . East European Journal of Physics, (3), 41-49. https://doi.org/10.26565/2312-4334-2025-3-04