Вплив додаткового шару P3HT на продуктивність полімерного сонячного елемента P3HT: IC60BA

  • Ramabadran Chittur Devarajan Кафедра фізики, Урядовий коледж, Чіттур, Палаккад, Університет Калікута, Керала, Індія; Кафедра фізики, дослідницька лабораторія моделювання оптоелектронних пристроїв, Коледж Христа [Автономний], Ірінджалакуда, Тріссур, Університет Калікута, Керала, Індія https://orcid.org/0009-0003-2255-3087
  • К. Себастьян Судхір Christ College(Autonomous), Irinjalakuda https://orcid.org/0000-0002-9019-4405
Ключові слова: сонячний елемент з об'ємного гетероперехідного полімеру, фулерен, SCAPS 1-D, активний шар, ETL, HTL

Анотація

Було проведено моделювання з використанням програмного забезпечення SCAPS 1-D для вивчення впливу додаткового шару P3HT (полі-3-гексилтіофен) на продуктивність сонячних елементів з об'ємним гетеропереходом, зокрема з активним шаром P3HT: IC60BA. Досліджувана структура елемента - ITO/PEDOT:PSS/P3HT/P3HT:IC60BA/ZnO NPs/Al. Після стандартизації програмного забезпечення ми визначили оптимальні параметри структури сонячного елемента, проаналізувавши різні фактори, що впливають на продуктивність елемента в різних шарах. Згодом, після оптимізації структури, ефективність перетворення енергії (PCE) значно покращилася, збільшившись з 5,18% без додаткового шару до 15,26% з додатковим шаром.

Завантаження

##plugins.generic.usageStats.noStats##

Біографія автора

Ramabadran Chittur Devarajan, Кафедра фізики, Урядовий коледж, Чіттур, Палаккад, Університет Калікута, Керала, Індія; Кафедра фізики, дослідницька лабораторія моделювання оптоелектронних пристроїв, Коледж Христа [Автономний], Ірінджалакуда, Тріссур, Університет Калікута, Керала, Індія

Assistant Professor, Department of Physics

Посилання

Y. He, G. Zhao, B. Peng, and Y. Li, “High-Performance Polymer Solar Cells with P3HT:PCBM Bulk Heterojunction: A Combined Experimental and Simulation Study,” Advanced Functional Materials, 20(19), 3383–3389 (2010). https://doi.org/10.1002/adfm.201000973

C. Bendenia, H. Merad-Dib, S. Bendenia, and B. Hadri, “Numerical simulation of CIGS solar cells with SCAPS-1D: Optimization of the absorber band gap grading and thickness,” Optik, 174, 167–172 (2018). https://doi.org/10.1016/j.ijleo.2018.08.058

A. Hazra, I. Mal, D. Samajdar, and T. Das, “Device simulation of lead-free CH₃NH₃SnI₃ perovskite solar cells with high efficiency,” Optik, 168, 747–753 (2018). https://doi.org/10.1016/j.ijleo.2018.04.117

Y. Sun, C. Cui, H. Wang, and Y. Li, “Fabrication of Flexible, Free-Standing, Ultralight Carbon Nanotube Aerogel Films for Supercapacitor Electrodes,” Advanced Energy Materials, 1(6), 1058–1061(2011). https://doi.org/10.1002/aenm.201100322

Y. He, H.-Y. Chen, J. Hou, and Y. Li, “Indene−C60 Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells,” Journal of the American Chemical Society (JACS), 132(4), 1377–1382 (2010). https://doi.org/10.1021/ja908602j

G. Zhao, Y. He, and Y. Li, “6.5% Efficiency of Polymer Solar Cells Based on poly(3- hexylthiophene) and Indene-C60 Bisadduct by Device Optimization,” Advanced Materials, 22(39), 4355–4358 (2010). https://doi.org/10.1002/adma.201001339

Z. Tan, D. Qian, W. Zhang, L. Li, Y. Ding, Q. Xu, F. Wang, and Y. Li, “Efficient and stable polymer solar cells with a solution-processable small molecule as anode buffer layer,” Journal of Materials Chemistry A, 1(3), 657–664 (2013). https://doi.org/10.1039/C2TA00575F

S. Gartner, M. Christmann, S. Sankaran, H. Röhm, E.-M. Prinz, F. Penth, A. Pütz, et al., “esign Rules for High-Efficiency Polymer Solar Cells with Low Energy Loss and High Fill Factor,” Advanced materials, 26(38), 6653–6657 (2014). https://doi.org/10.1002/adma.201402932

E.F. Oliveira, L.C. Silva, and F.C. Lavarda, “Electronic structure and charge transport properties of star-shaped molecules with 1,3,5-triazine core and thiophene arms for photovoltaic applications,” Structural Chemistry, 28, 1133–1140 (2017). https://doi.org/10.1007/s11224-017-0926-y

G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,” Science, 270, 1789 -1791 (1995). https://doi.org/10.1126/science.270.5243.1789

J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, and G.C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols,” Nature materials, 6(7), 497–500 (2007). https://doi.org/10.1038/nmat1928

J.K. Lee, W.L. Ma, C.J. Brabec, J. Yuen, J.S. Moon, J.Y. Kim, K. Lee, et al., “Processing additives for improved efficiency from bulk heterojunction solar cells,” Journal of the American Chemical Society, 130(11), 3619–3623 (2008). https://doi.org/10.1021/ja710079w

N. Loew, S. Komatsu, H. Akita, K. Funayama, T. Yuge, T. Fujiwara, and M. Ihara, “Development of a novel glucose sensor using engineered glucose dehydrogenase,” ECS Transactions, 58(45), 77- 82 (2014). https://doi.org/10.1149/05845.0077ecst

P. Matavulj, M.K. Islam, and C.S. Živanović, “Numerical simulation of organic solar cells: Impact of interface layers on device performance,” in: Proceedings of the International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), (IEEE, Copenhagen, Denmark, 2017), pp. 133–134. https://doi.org/10.1109/NUSOD.2017.8010026

S.-A. Gopalan, A.-I. Gopalan, A. Vinu, K.-P. Lee, and S.-W. Kang, “A new strategy for designing high-efficiency cascaded solar cells: Optical and electrical modeling using SCAPS-1D,” Solar Energy Materials and Solar Cells, 174, 112-123 (2018). https://doi.org/10.1016/j.solmat.2017.08.033

M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films, 361-362, 527-532 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1

B. Xu, G. Sai-Anand, A.-I. Gopalan, Q. Qiao, and S.-W. Kang, “Improving Photovoltaic Properties of P3HT:IC60BA through the Incorporation of Small Molecules,” Polymers, 10(2), 121 (2018). https://doi.org/10.3390/polym10020121

S. Hosseini, M. Bahramgour, N. Delibaş, and A. Niaie, “Investigation of a Perovskite Solar Cell and Various Parameters Impact on Its Layers and the Effect of Interface Modification by Using P3HT as an Ultrathin Polymeric Layer Through SCAPS-1D Simulation,” Sakarya University Journal of Science, 25(5), 1168-1179 (2021). https://doi.org/10.16984/saufenbilder.947735

A. Maillard and A. Rochefort, “Quantum transport properties of graphene nanoribbons with embedded heptagon-pentagon defects,” Organic Electronics, 15(9), 2091-2098 (2014). https://doi.org/10.1016/j.orgel.2014.05.028

H. Lee, (2015). “Optimization of energy level alignment for efficient organic photovoltaics,” Vacuum Magazine, 2(2), 12-16 (2015). https://doi.org/10.5757/VACMAG.2.2.12 (in Korean)

S. Holliday, et al., “High-efficiency and air-stable P3HT solar cells with a new non-fullerene acceptor,” Nature Communications, 7, 11585 (2016). https://doi.org/10.1038/ncomms11585

A. Kumar, and R. Singh, “Numerical Modelling Analysis for Carrier Concentration Level Optimization of CdTe Heterojunction Thin Film-Based Solar Cell with Different Non-Toxic Metal Chalcogenide Buffer Layers Replacements: Using SCAPS–1D Software,” Crystals, 11(12), 1454 (2021). https://doi.org/10.3390/cryst11121454

K. Nithya, and K. Sudheer, “Numerical modelling of non-fullerene organic solar cell with high dielectric constant ITIC-OE acceptor,” Journal of Physics Communications, 4(2), 025012 (2020). https://doi.org/10.1088/2399-6528/ab772a

S.W. Heo, E.J. Lee, K.W. Seong, and D.K. Moon, “Enhanced stability in polymer solar cells by controlling the electrode work function via modification of indium tin oxide,” Solar energy materials and solar cells, 115, 123–128, (2013). https://doi.org/10.1016/j.solmat.2013.03.023

S. Loser, C.J. Bruns, H. Miyauchi, R.P. Ortiz, A. Facchetti, S.I. Stupp, and T.J. Marks, “A Naphthodithiophene-Diketopyrrolopyrrole Donor Molecule for Efficient Solution-Processed Solar Cells,” Journal of the American Chemical Society, 133(21), 8142– 8145 (2011). https://doi.org/10.1021/ja202791n

G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, “Solvent annealing’ effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes,” Advanced Functional Materials, 17(10), 1636–1644 (2007). https://doi.org/10.1002/adfm.200600624

Z. He, F. Liu, C. Wang, J. Chen, L. He, D. Nordlund, H. Wu, T.P. Russell, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Materials Horizons, 2(6), 592–597(2015). https://doi.org/10.1039/C5MH00164A

X. Zhu, K. Lu, B. Xia, J. Fang, Y. Zhao, T. Zhao, Z. Wei, et al., “Improving the Performances of Random Copolymer Based Organic Photovoltaics by Incorporating Fluorine Substituents,” Polymers, 8(1), 4 (2015). https://doi.org/10.3390/polym8010004

L. Lu, et al., “High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes,” Nat. Commun. 6, 7327 (2015). https://doi.org/10.1038/ncomms8327

M.M. Stylianakis, D. Konios, C. Petridis, G. Kakavelakis, E. Stratakis, and E. Kymakis, “Efficient and stable hybrid perovskite–graphene solar cells via interfacial passivation with 2D–2D heterostructures,” 2D Materials, 4(4), 042005 (2017). https://doi.org/10.1088/2053-1583/aa87b6

B.N. Ezealigo, A.C. Nwanya, A. Simo, R.U. Osuji, R. Bucher, M. Maaza, and F.I. Ezema, “Optical and electrochemical capacitive properties of copper (I) iodide thin film deposited by SILAR method,” Arabian Journal of Chemistry, 12(8), 5380–5391 (2019). https://doi.org/10.1016/j.arabjc.2017.01.008

J. Liu, Y. Zhang, C. Liu, M. Peng, A. Yu, J. Kou, W. Liu, et al., “High-Performance UV Photodetector Based on a Heterojunction of a ZnO Nanowire Array and a Few-Layer MoS₂ Film,” Nanoscale research letters, 11, 1–7 (2016). https://doi.org/10.1186/s11671-016-1291-2

Z. El Jouad, M. Morsli, G. Louarn, L. Cattin, M. Addou, and J.C. Bern`ede, “Improving the efficiency of subphthalocyanine based planar organic solar cells through the use of MoO3/CuI double anode buffer layer,” Solar Energy Materials and Solar Cells, 141, 429– 435 (2015). https://doi.org/10.1016/j.solmat.2015.06.017

M.I. Hossain, F.H. Alharbi, and N. Tabet, “Copper oxide as inorganic hole Transport material for lead halide perovskite based solar cells,” Solar Energy, 120, 370–380 (2015). https://doi.org/10.1016/j.solener.2015.07.037

B.M. Omer, A. Khogali, and A. Pivrikas, “Combined effects of carriers charge mobility and electrodes work function on the performance of organic photovoltaic devices,” in: 37th IEEE Photovoltaic Specialists Conference, pp. 000734–000743 (IEEE, 2011). https://doi.org/10.1109/LED.2011.2117953

O.D. Iakobson, O.L. Gribkova, A.R. Tameev, and J.-M. Nunzi, “Polymeric semiconductors for hybrid organic-inorganic solar cells: A comparative study of water-soluble polythiophenes,” Scientific Reports, 11, 3697 (2021). https://doi.org/10.1038/s41598-021-84452-x

N. Sharma, S.K. Gupta, and C.M. Singh Negi, “Enhanced performance of organic solar cells by using zinc oxide and graphene quantum dots as electron transport layer,” Superlattices and Microstructures, 135, 106278 (2019). [https://doi.org/10.1016/j.spmi.2019.106278]

K. Weng, L. Ye, L. Zhu, J. Xu, J. Zhou, X. Feng, G. Lu, et al., “Molecular design of benzodithiophene-based organic photovoltaic materials to achieve both high VOC and JSC,” Nature Communications, 11, 2855 (2020). https://doi.org/10.1038/s41467-020-16621-x

Y. Zhang, X. Li, T. Dai, D. Xu, J. Xi, and X. Chen, “Charge transport and extraction of PTB7:PC71BM organic solar cells: effect of film thickness and thermal-annealing,” RSC Advances, 9(31), 17857-17864 (2019). https://doi.org/10.1039/c9ra02877c

A. Gusain, R.M. Faria, and P.B. Miranda, “Controlling the morphology and performance of bulk heterojunctions in solar cells: Lessons from interfacial forces,” Frontiers in Chemistry, 7, 61 (2019). https://doi.org/10.3389/fchem.2019.00061

M. Zhang, X. Xu, L. Yu, and Q. Peng, “High-performance ternary organic solar cells with controllable morphology via sequential layer-by-layer deposition,” Journal of Power Sources, 506, 229961 (2021). https://doi.org/10.1016/j.jpowsour.2021.229961

D. Spoltore, W.D. Oosterbaan, S. Khelifi, J.N. Clifford, A. Viterisi, E. Palomares, M. Burgelman, et al., “A combined experimental and modeling study of the factors limiting the performance of polymer:fullerene solar cells processed from chlorobenzene and 1,2- dichlorobenzene,” Advanced Energy Materials, 3(2), 227-236 (2013). https://doi.org/10.1002/aenm.201200674

M.R. Khan, and B. Jarząbek, “Recent Advances in Polymer-Based Materials for High-Performance Perovskite Solar Cells,” Polymers, 15(18), 3674 (2023). https://doi.org/10.3390/polym15183674

C. Deibel, Photocurrent in organic solar cells – Part 1, Blog post, Notes on Disordered Matter (2009). https://blog.disorderedmatter.eu/2009/07/20/photocurrent-in-organic-solar-cells-part-1

B. Qi, and J. Wang, “Fill factor in organic solar cells,” Journal of Materials Chemistry, 22(46), 24315- 24325 (2012). https://doi.org/10.1039/c2jm33719c

M. Wright, and A. Uddin, “Organic–inorganic hybrid perovskites: A solution for cost-effective solar cells,” Solar Energy Materials, and Solar Cells, 107, 87–117 (2012). https://doi.org/10.1016/j.solmat.2012.07.006

S. Galindo, M. Ahmadpour, L.G. Gerling, A. Marsal, C. Voz, R. Alcubilla, and J. Puigdollers, “Analysis of the origin of open circuit voltage in organic solar cells with different device architectures,” Organic Electronics, 15(11), 3034-3041 (2014). https://doi.org/10.1016/j.orgel.2014.07.011

Z. Liu, and Y. Lin, “Recent advances in polymer-based interfacial materials for efficient and stable organic solar cells,” Polymer Testing, 131, 108387 (2024). https://doi.org/10.1016/j.polymertesting.2024.108387

A. Kumar, and S. Sharma, “Performance analysis of organic solar cells with different anode buffer layers,” IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 14(4), 49-54 (2019). https://www.iosrjournals.org/iosr-jeee/Papers/Vol14%20Issue%204/Series-1/G1404014954.pdf

J. Yang, X. Wang, X. Yu, J. Liu, Z. Zhang, J. Zhong, and J. Yu, “Recent advances in organic solar cells with non-fullerene acceptors: From morphology control to device optimization,” Nanomaterials, 13(21), 2899 (2023). https://doi.org/10.3390/nano13212899

S. Valsalakumar, S. Bhandari, A. Roy, T.K. Mallick, J. Hinshelwood, and S. Sundaram, “Machine learning-based optimization of hole transport layer-free carbon-based perovskite solar cells,” Npj Computational Materials, 10(1), 94 (2024). https://doi.org/10.1038/s41524-024-01383-7

T.M. Mukametkali, B.R. Ilyassov, A.K. Aimukhanov, T.M. Serikov, A.S. Baltabekov, L.S. Aldasheva, and A.K. Zeinidenov, “Optical and electronic properties of monolayer MoS₂ under different strains: DFT study,” Physica B: Condensed Matter, 660, 414784 (2023). https://doi.org/10.1016/j.physb.2023.414784

S. Sakib, M.Y. Mohd Noor, M.R. Salim, A.S. Abdullah, A.I. Azmi, M.H. Ibrahim and M.H. Ibrahim, “Effect of different composition ratio on structural and morphological properties of TiO₂ nanoparticles synthesized by sol-gel method,” Mater. Today: Proc. 76, 176–182 (2023). https://doi.org/10.1016/j.matpr.2022.11.4564

C. Poelking, J. Benduhn, D. Spoltore, M. Schwarze, S. Roland, F. Piersimoni, D. Neher, et al., “Interfacial electrostatics control open-circuit voltage in organic solar cells,” Communications Physics, 5(1), 332 (2022). https://doi.org/10.1038/s42005-022-01084-x

M.R. Khan, and B. Jarząbek, “The effect of 3D printing process parameters on the mechanical properties of PLA polymer and polymer composites: A review,” Polymers, 15(18), 3674 (2023). https://doi.org/10.3390/polym15183674

S.A. Moiz, M.S. Alzahrani, and A.N.M. Alahmadi, “Influence of process parameters on mechanical properties of natural fiber-reinforced polymer composites: A review,” Polymers, 14(17), 3610 (2022). https://doi.org/10.3390/polym14173610

D. Bartesaghi, I. del C. Pérez, J. Kniepert, S. Roland, M. Turbiez, D. Neher, and L.J.A. Koster, “Competition between charge extraction and recombination determines the fill factor in organic solar cells,” Nature Communications, 6, 7083 (2015). https://doi.org/10.1038/ncomms8083

J.C. Nolasco, R. Cabré, J. Ferré-Borrull, L.F. Marsal, M. Estrada, and J. Pallarès, “Design of two-dimensional silicon photonic crystals by means of a guided-mode resonant filter structure,” Journal of Applied Physics, 107(2), 023108 (2010). https://doi.org/10.1063/1.3296294

Опубліковано
2025-09-08
Цитовано
Як цитувати
Chittur Devarajan, R., & Судхір, К. С. (2025). Вплив додаткового шару P3HT на продуктивність полімерного сонячного елемента P3HT: IC60BA. Східно-європейський фізичний журнал, (3), 454-465. https://doi.org/10.26565/2312-4334-2025-3-50