Вплив джоулевого нагрівання та гідромагнітних ефектів на змішану конвекцію в пористій порожнині з використанням методу Больцмана з граткою

  • C. Венката Лакшмі Кафедра прикладної математики, Шрі Падмаваті Махіла Вішвавідьялаям, Тірупаті, Андхра-Прадеш, Індія https://orcid.org/0000-0003-2921-8129
  • Анурадха Аравапаллі Кафедра прикладної математики, Шрі Падмаваті Махіла Вішвавідьялаям, Тірупаті, Андхра-Прадеш, Індія https://orcid.org/0009-0003-5137-8804
  • К. Венкатадрі Кафедра математики, Університет Мохана Бабу (колишній інженерний коледж Шрі Відьянікетан), Тірупаті, Андхра-Прадеш, Індія https://orcid.org/0000-0001-9248-6180
  • О. Анвар Бег Група багатофізичних інженерних наук, Аеронавтика/Машинобудування, Університет Солфорда, Лабораторія корозії, Манчестер, M54WT, Велика Британія https://orcid.org/0000-0003-0614-8711
  • В. Рамачандра Прасад Кафедра математики, Школа передових наук, Технологічний інститут Веллор, Веллор, Таміл Наду, Індія https://orcid.org/0000-0002-9168-3825
Ключові слова: метод Больцмана з ґраткою (LBM), порожнина з кришкою, магнітогідродинаміка, змішана конвекція, джоулева термічна обробка, пористе середовище

Анотація

У цій статті проводиться комплексне дослідження теплопередачі під впливом кількох факторів, включаючи магнітне поле, рухому кришку, пористе середовище та джоулеве нагрівання в порожнині з кришкою (LDC). Порожнина має рухому кришку, вертикальні стінки з теплоізольованими межами та горизонтальні стінки, що підтримуються при рівномірних температурах Th (внизу) та Tc (вгорі). Метою дослідження є аналіз поведінки змішаної конвективної теплопередачі системи за допомогою контурних діаграм для візуалізації потоку та теплової картини за різних розглянутих параметрів: числа Річардсона (0,01 ≤ Ri ≤ 10) та параметри джоулеве нагрівання (0 ≤ J ≤ 10⁻⁵), числа Гартмана (0 ≤ Ha ≤ 30) та числа Дарсі (0,001 ≤ Da ≤ 0,1). Для використання основних рівнянь переносу застосовується метод ґратчастого Больцмана (LBM). Ефекти джоулевої термічної обробки є критично важливими в системах, де необхідно контролювати внутрішнє теплоутворення, наприклад, в електричних системах або охолодженні акумуляторів, де резистивна термічна обробка може як сприяти, так і перешкоджати бажаній тепловій динаміці.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

Y.U.U.B. Turabi, and S. Munir, “CFD simulations of MHD effects on mixed convectional flow in a lid-driven square cavity with square cylinder using Casson fluid,’ Numerical Heat Transfer, Part B: Fundamentals, pp.1-16 (2024). https://doi.org/10.1080/10407790.2024.2365890

H.F. Oztop, and I. Dagtekin, “Mixed convection in two-sided lid-driven differentially heated square cavity,” International Journal of Heat and Mass Transfer, 47(8-9), 761-1769 (2004). http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.10.016

R. Parveen, A.K. Hussein, T.R. Mahapatra, M. Al-Thamir, A. Abidi, M.B.B. Hamida, R.Z. Homod, and F.L. Rashid, “MHD double diffusive mixed convection and heat generation / absorption in a lid-driven inclined wavy enclosure filled with a ferrofluid,” Int. J. Thermofluids, 22, 100698 (2024). https://doi.org/10.1016/j.ijft.2024.100698

O. Zikanov, I. Belyaev, Y. Listratov, P. Frick, N. Razuvanov, and V. Sviridov, “Mixed convection in pipe and duct flows with strong magnetic fields,” Appl. Mech. Rev. 73(1), 010801 (2021). https://doi.org/10.1115/1.4049833

N.R. Devi, M. Gnanasekaran, A. Satheesh, P.R. Kanna, J. Taler, D.S. Kumar, et al., “Double-diffusive mixed convection in an inclined square cavity filled with nanofluid: A numerical study with external magnetic field and heated square blockage effects,” Case Studies in Thermal Engineering, 56, 104210 (2024). https://doi.org/10.1016/j.csite.2024.104210

P. Mondal, T.R. Mahapatra, R. Parveen, and B.C. Saha, “Heat Generation/Absorption in MHD double diffusive mixed convection of different nanofluids in a Trapezoidal enclosure,” J. Nanofluids, 13(2), 339-349 (2024). https://doi.org/10.1166/jon.2024.2116

R. Parveen, and T. R. Mahapatra, “Heat and mass source effect on MHD double diffusive mixed convection and entropy generation in a curved enclosure filled with nanofluid,” Nonlin. Analy. Model. Control, 27(2) 308-330 (2022). https://doi.org/10.15388/namc.2022.27.25338

Q. Yu, H. Xu, and S. Liao, “Analysis of mixed convection flow in an inclined lid driven enclosure with Buongiorno’s nanofluid model,” Int. J. Heat Mass Transf. 126, 221-236 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.109

Z. Mahmood, and U. Khan, “Mixed convective flow of nanofluid across exponential surface: A numerical assessment of the impact of Darcy-Forchheimer and nanoparticle aggregation,” Numerical Heat Transfer, Part A: Applications, 86(7), 1-26 (2023). https://doi.org/10.1080/10407782.2023.2288265

M.J.H. Munshi, M.A. Alim, A.H. Bhuiyan, and M. Ali, “Hydrodynamic mixed convection in a lid-driven square cavity including elliptic shape heated block with corner heater,” Procedia engineering, 194, 442-449 (2017). https://doi.org/10.1016/j.proeng.2017.08.169

S. Sivasankaran, V. Sivakumar, and A.K. Hussein, “Numerical study on mixed convection in an inclined lid-driven cavity with discrete heating,” International Communications in Heat and Mass Transfer, 46, 112-125 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2013.05.022

K.M. Khanafer, and J. Chamkha, “Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium,” Int. J. Heat Mass Transf. 42(13), 2465–2481 (1999). https://doi.org/10.1016/S0017-9310(98)00227-0

M.J.H. Munshi, N. Jahan, and G. Mostafa, “Mixed Convection Heat Transfer of Nanofluid in a Lid-Driven Porous Medium Square Enclosure with Pairs of Heat Source Sinks,” Am. J. Eng. Res. (AJER), 8(6), 59-70 (2019).

Y. Nawaz, M.S. Arif, K. Abodayeh, and A.H. Soori. “A two-stage multi-step numerical scheme for mixed convective Williamson nanofluid flow over flat and oscillatory sheets,” International Journal of Modern Physics B, 38(22), 2450298 (2024). https://doi.org/10.1142/S0217979224502989

D. Qaiser, Z. Zheng, and M.R. Khan, “Numerical assessment of mixed convection flow of Walters-B nanofluid over a stretching surface with Newtonian heating and mass transfer,” Thermal Sci. Eng. Prog. 22, 100801 (2021). https://doi.org/10.1016/j.tsep.2020.100801

M.A. Sheremet, M.S. Astanina, and I. Pop, “MHD natural convection in a square porous cavity filled with a water-based magnetic fluid in the presence of geothermal viscosity,” International Journal of Numerical Methods for Heat & Fluid Flow, 28(9), 2111 2131 (2018). https://doi.org/10.1108/HFF-12-2017-0503

M.S. Alam, M.S.H. Mollah, M.A. Alim, and M.K.H. Kabir, «Finite Element Analysis of MHD Natural Convection in a Rectangular Cavity and Partially Heated Wall,” Engineering and Applied Sciences, 10(4), 53-58 (2017). https://doi.org/10.11648/j.eas.20170203.12

B.P. Geridonmez, and H.F. Oztop, “Mixed Convection Heat Transfer in a Lid-Driven Cavity under the Effect of a Partial Magnetic Field,” Heat Transfer Engineering, 42(10), 875–887 (2020). https://doi.org/10.1080/01457632.2020.1792622

S.S. Suchana, and M.M. Ali, “Finite Element Analysis of Convective Heat Transfer in a Linearly Heated Porous Trapezoidal Cavity in the Presence of a Magnetic Field,” Int. J. Appl. Comput. Math. 10, 141 (2024). https://doi.org/10.1007/s40819-024-01770-0

C.G. Mohan, and A. Satheesh, “The Numerical Simulation of Double-Diffusive Mixed Convection Flow in a Lid-Driven Porous Cavity with Magnetohydrodynamic Effect,” Arab. J. Sci. Eng. 41, 1867–1882 (2016). https://doi.org/10.1007/s13369-015-1998-x

N.A. Bakar, R. Roslan, A. Karimipour, and I. Hashim, “Mixed convection in lid-driven cavity with inclined magnetic field,” Sains Malaysiana, 48(2), 451-471 (2019). http://dx.doi.org/10.17576/jsm-2019-4802-24

H. Moria, “Natural convection in an L-shape cavity equipped with heating blocks and porous layers,” International Communications in Heat and Mass Transfer, 126, 105375 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105375

Y. Wang, G. Qin, W. He, and Z. Bao, “Chebyshev spectral element method for natural convection in a porous cavity under local thermal non-equilibrium model,” International Journal of Heat and Mass Transfer, 121, 1055-1072 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.024

A. Nee, “Hybrid Lattice Boltzmann Simulation of Three-Dimensional Natural Convection,” Journal of Computational and Theoretical Transport, 50(4), 280–296 (2021). https://doi.org/10.1080/23324309.2021.1942061

S.A. Fanaee, A. Shahriari, and S. Nikpour, “The Lattice Boltzmann Simulation of Free Convection Heat Transfer of a Carbon-Nanotube Nanofluid in a Triangular Cavity with a Solar Heater,” Journal of Nanofluids, 13(3), 694-709 (2024). https://doi.org/10.1166/jon.2024.2159

A. Mahmoudi, I. Mejri, M.A. Abbassi, and A. Omri, “Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution,” Powder Technology, 256, 257-271 (2014). https://doi.org/10.1016/j.powtec.2014.02.032

G.R. Kefayati, “Lattice Boltzmann simulation of natural convection in a square cavity with a linearly heated wall using nanofluid,” Arabian Journal for Science and Engineering, 39(3), 2143-2156 (2014). https://doi.org/10.1007/s13369-013-0748-1

R.K. Tiwari, and M.K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids.” Int. J. Heat Mass. Transf. 50, 2002–2018 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034

R. Iwatsu, J.M. Hyun, and K. Kuwahara, “Mixed convection in a driven cavity with a stable vertical temperature gradient,” Int. J. Heat Mass Transf. 36, 1601–1608 (1993). https://doi.org/10.1016/S0017-9310(05)80069-9

M.K. Moallemi, and K.S. Jang, “Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity,” International Journal of Heat and Mass Transfer, 35(8), 1881-1892 (1992). https://doi.org/10.1016/0017-9310(92)90191-T

Опубліковано
2025-06-09
Цитовано
Як цитувати
ЛакшміC. В., Аравапаллі, А., Венкатадрі, К., Бег, О. А., & Прасад, В. Р. (2025). Вплив джоулевого нагрівання та гідромагнітних ефектів на змішану конвекцію в пористій порожнині з використанням методу Больцмана з граткою. Східно-європейський фізичний журнал, (2), 383-397. https://doi.org/10.26565/2312-4334-2025-2-47