Чисельне дослiдження стискаючого потоку потрiйної гiбридної нанорiдини Cu-Al2O3-TiO2/H2O мiж двома паралельними пластинами в пористому середовищi дарсi з в’язкою дисипацiєю та джерелом тепла

  • Рубул Бора Факультет математики, коледж CNB, Бокахат-785612, Ассам, Iндiя https://orcid.org/0000-0002-3164-2255
  • Бiдют Боруа Факультет математики, коледж CNB, Бокахат-785612, Ассам, Iндiя https://orcid.org/0009-0004-4978-1343
Ключові слова: теплове випромiнювання, в’язке розсiювання, паралельна пластина, джерело тепла, потрiйний гiбридний нанофлюїд, пористе середовище Дарсi, bvp

Анотація

Ця робота спрямована на чисельне дослiдження впливу в’язкої дисипацiї та джерела тепла на магнiтогiдродинамiчний стискаючий потiк потрiйних гiбридних нанофлюїдiв на воднiй основi мiж двома паралельними пластинами в пористому середовищi Дарсi. Наночастинки Cu, Al2O3, і  TiO2 диспергуються в базовiй рiдинi H2O, що призводить до створення потрiйної гiбридної нанорiдини Cu-Al2O3-TiO2-H2O. У цьому дослiдженнi вивчається деформацiя нижньої пластини, коли верхня просувається до неї. Чисельнi результати обчислюються за допомогою 3-етапного методу Лобатто IIIa, який спецiально реалiзовано Bvp4c у MATLAB. Вплив рiзних параметрiв вiзуально проiлюстровано за допомогою графiкiв i кiлькiсно показано в таблицях. Вважається, що абсолютне поверхневе тертя потрiйної гiбридної нанорiдини приблизно на 5% вище, нiж у звичайної нанорiдини на нижнiй пластинi, i щонайбiльше на 7% вище, нiж у нанорiдини на верхнiй пластинi. Швидкiсть теплопередачi потрiйної
гiбридної нанофлюїду вища на верхнiй пластинi порiвняно з нижньою.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

S.U.S. Choi, and J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, (Argonne National Lab., Argonne, IL, United States, 1995).

A. Raees, H. Xu, and S.-J. Liao, ”Unsteady mixed nano-bioconvection flow in a horizontal channel with its upper plate expanding or contracting,” International Journal of Heat and Mass Transfer, 86, 174-182 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.003

T. Hayat, T. Muhammad, A. Qayyum, A. Alsaedi, and M. Mustafa, ”On squeezing flow of nanofluid in the presence of magnetic field effects,” Journal of Molecular Liquids, 213, 179-185 (2016). https://doi.org/10.1016/j.molliq.2015.11.003

T. Hayat, R. Sajjad, A. Alsaedi, T. Muhammad, and R. Ellahi, ”On squeezed flow of couple stress nanofluid between two parallel plates,” Results in physics, 7, 553-561 (2017). https://doi.org/10.1016/j.rinp.2016.12.038

S. Salehi, A. Nori, Kh. Hosseinzadeh, and D.D. Ganji, ”Hydrothermal analysis of MHD squeezing mixture fluid suspended by hybrid nanoparticles between two parallel plates,” Case Studies in Thermal Engineering, 21, 100650 (2020). https://doi.org/10.1016/j.csite.2020.100650

N. Acharya, ”On the flow patterns and thermal behaviour of hybrid nanofluid flow inside a microchannel in presence of radiative solar energy,” Journal of Thermal Analysis and Calorimetry, 141(4), 1425-1442 (2020). https://doi.org/10.1007/s10973-019-09111-w

N. Acharya, R. Bag, and P.K. Kundu, ”Unsteady bioconvective squeezing flow with higher-order chemical reaction and second order slip effects,” Heat Transfer, 50(6), 5538-5562 (2021). https://doi.org/10.1002/htj.22137

S. Islam, A. Khan, W. Deebani, E. Bonyah, N.A. Alreshidi, and Z. Shah, ”Influences of Hall current and radiation on MHD micropolar non-newtonian hybrid nanofluid flow between two surfaces,” AIP Advances, 10(5), 055015 (2020). https://doi.org/10.1063/1.5145298

M.D. Ikram, M.I. Asjad, A. Akg¨ul, and D. Baleanu, ”Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates,” Alexandria Engineering Journal, 60(4), 3593-3604 (2021). https://doi.org/10.1016/j.aej.2021.01.054

N.S. Khashi’ie, I. Waini, N.Md. Arifin, and I. Pop, ”Unsteady squeezing flow of Cu-Al2O3/water hybrid nanofluid in a horizontal channel with magnetic field,” Scientific reports, 11(1), 14128 (2021). https://doi.org/10.1038/s41598-021-93644-4

M. Yaseen, S.K. Rawat, A. Shafiq, M. Kumar, and K. Nonlaopon, ”Analysis of heat transfer of mono and hybrid nanofluid flow between two parallel plates in a Darcy porous medium with thermal radiation and heat generation/absorption,” Symmetry, 14(9), 1943 (2022). https://doi.org/10.3390/sym14091943

H.T. Rostami, M.F. Najafabadi, Kh. Hosseinzadeh, and D.D. Ganji, ”Investigation of mixture-based dusty hybrid nanofluid flow in porous media affected by magnetic field using RBF method,” International Journal of Ambient Energy, 43(1), 6425-6435 (2022). https://doi.org/10.1080/01430750.2021.2023041

A.R. Faisal, N.A. Shah, and T. Botmart, ”Hall current and morphological effects on mhd micropolar non-newtonian tri-hybrid nanofluid flow between two parallel surfaces,” Scientific Reports, 12(1), 16608 (2022). https://doi.org/10.1038/s41598-022-19625-3

I.Waini, A. Ishak, and I. Pop. ”Radiative and magnetohydrodynamic micropolar hybrid nanofluid flow over a shrinking sheet with joule heating and viscous dissipation effects,” Neural Computing and Applications, 34(5), 3783-3794 (2022). https://doi.org/10.1007/s00521-021-06640-0

O.A. Famakinwa, O.K. Koriko, and K.S. Adegbie, ”Effects of viscous dissipation and thermal radiation on time dependent incompressible squeezing flow of CuO-Al2O3/water hybrid nanofluid between two parallel plates with variable viscosity,” Journal of Computational Mathematics and Data Science, 5, 100062 (2022). https://doi.org/10.1016/j.jcmds.2022.100062

M. Bilal, A. El-Sayed Ahmed, R.A. El-Nabulsi, N.A. Ahammad, K.A.M. Alharbi, M.A. Elkotb, W. Anukool, and A.S.A. Zedan, ”Numerical analysis of an unsteady, electroviscous, ternary hybrid nanofluid flow with chemical reaction and activation energy across parallel plates,” Micromachines, 13(6), 874 (2022). https://doi.org/10.3390/mi13060874

H. Hanif,W. Jamshed, M.R. Eid, R. Ibrahim, S. Shafie, A.A. Raezah, S.M. El Din, et al., ”Numerical Crank-Nicolson methodology analysis for hybridity aluminium alloy nanofluid flowing based-water via stretchable horizontal plate with thermal resistive effect,” Case Studies in Thermal Engineering, 42, 102707 (2023). https://doi.org/10.1016/j.csite.2023.102707

N.A.M. Noor, and S. Shafie, ”Magnetohydrodynamics squeeze flow of sodium alginate-based Jeffrey hybrid nanofluid with heat sink or source,” Case Studies in Thermal Engineering, 49, 103303 (2023). https://doi.org/10.1016/j.csite.2023.103303

A. Ullah, N. Fatima, K.A.M. Alharbi, S. Elattar, and W. Khan, ”A numerical analysis of the hybrid nanofluid (Ag+TiO2+water) flow in the presence of heat and radiation fluxes,” Energies, 16(3), 1220 (2023). https://doi.org/10.3390/en16031220

N.C. Roy, and I. Pop, ”Analytical investigation of transient free convection and heat transfer of a hybrid nanofluid between two vertical parallel plates,” Physics of Fluids, 34(7), 072005 (2022). https://doi.org/10.1063/5.0096694

P. Jayavel, R. Katta, and R.K. Lodhi, ”Numerical analysis of electromagnetic squeezing flow through a parallel porous medium plate with impact of suction/injection,” Waves in Random and Complex Media, 1-24, (2022). https://doi.org/10.1080/17455030.2022.2088890

K. Bhaskar, K. Sharma, and K. Bhaskar. ”MHD squeezed radiative flow of Casson hybrid nanofluid between parallel plates with joule heating,” International Journal of Applied and Computational Mathematics, 10(2), 80 (2024). https://doi.org/10.1007/s40819-024-01720-w

H. Maiti, and S. Mukhopadhyay, ”Squeezing unsteady nanofluid flow among two parallel plates with first-order chemical reaction and velocity slip,” Heat Transfer, 53(4), 1790-1815 (2024). https://doi.org/10.1002/htj.23015

B.M. Madit, J.K. Kwanza, and P.R. Kiogora, ”Hydromagnetic squeezing nanofluid flow between two vertical plates in presence of a chemical reaction,” Journal of Applied Mathematics and Physics, 12(1), 126-146 (2024). https://doi.org/10.4236/jamp.2024.121011

N.S. Khashi’ie, N.Md. Arifin, E.H. Hafidzuddin, and N.Wahi, ”Dual stratified nanofluid flow past a permeable shrinking/stretching sheet using a non-fourier energy model,” Applied sciences, 9(10), 2124 (2019). https://doi.org/10.3390/app9102124

N.S. Khashi’ie, E.H. Hafidzuddin, N.Md. Arifin, and N.Wahi, ”Stagnation point flow of hybrid nanofluid over a permeable vertical stretching/shrinking cylinder with thermal stratification effect,” CFD Letters, 12(2), 80-94 (2020). https://www.akademiabaru.com/submit/index.php/cfdl/article/view/3215/2247

R.S. Nath, and R.K. Deka, ”Theoretical Study of Thermal and Mass Stratification Effects on MHD Nanofluid Past an Exponentially Accelerated Vertical Plate in a Porous Medium in Presence of Heat Source, Thermal Radiation and Chemical Reaction,” International Journal of Applied and Computational Mathematics, 10(2), 92 (2024). https://doi.org/10.1007/s40819-024-01721-9

R.S. Nath, and R.K. Deka, ”Thermal and mass stratification effects on MHD nanofluid past an exponentially accelerated vertical plate through a porous medium with thermal radiation and heat source,” International Journal of Modern Physics B, 2550045, (2024). https://doi.org/10.1142/S0217979225500456

R.S. Nath, and R.K. Deka, ”Thermal and mass stratification effects on unsteady parabolic flow past an infinite vertical plate with exponential decaying temperature and variable mass diffusion in porous medium,” ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift f¨ur Angewandte Mathematik und Mechanik, e202300475 (2024). https://doi.org/10.1002/zamm.202300475

R.S. Nath, and R.K. Deka, ”A Numerical Study on the MHD Ternary Hybrid Nanofluid (Cu-Al2O3-TiO2/H2O) in presence of Thermal Stratification and Radiation across a Vertically Stretching Cylinder in a Porous Medium,” East European Journal of Physics, (1), 232-242 (2024). https://doi.org/10.26565/2312-4334-2024-1-19

R.S. Nath, and R.K. Deka, ”A Numerical Investigation of the MHD Ternary Hybrid Nanofluid (Cu-Al2O3-TiO2/H2O) Past a Vertically Stretching Cylinder in a Porous Medium with Thermal Stratification,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 116(1), 78-96 (2024). https://doi.org/10.37934/arfmts.116.1.7896

M.V. Krishna, ”Numerical investigation on steady natural convective flow past a perpendicular wavy surface with heat absorption/generation,” International Communications in Heat and Mass Transfer, 139, 106517 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2022.106517

M.V. Krishna, and K. Vajravelu, ”Rotating MHD flow of second grade fluid through porous medium between two vertical plates with chemical reaction, radiation absorption, Hall, and ion slip impacts,” Biomass Conversion and Biorefinery, 14(7), 8745-8759 (2024). https://doi.org/10.1007/s13399-022-02802-9

M.V. Krishna, ”Hall effects on magnetohydrodynamic rotating flow through porous medium in a parallel plate channel with various oscillations of pressure gradient,” Heat Transfer, 52(1), 236-266 (2023). https://doi.org/10.1002/htj.22693

N. Hale, and D. Moore, A sixth-order extension to the MATLAB package bvp4c of J. Kierzenka and L. Shampine, (Oxford University Computing Laboratory, 2008).

S. Rosseland, Astrophysik und atom-theoretische Grundlagen, (Springer-Verlag; Berlin, 1931).

I. Waini, A. Ishak, and I. Pop, ”Mixed convection flow over an exponentially stretching/shrinking vertical surface in a hybrid nanofluid,” Alexandria Engineering Journal, 59(3), 1881-1891 (2020). https://doi.org/10.1016/j.aej.2020.05.030

Опубліковано
2024-12-08
Цитовано
Як цитувати
Бора, Р., & Боруа, Б. (2024). Чисельне дослiдження стискаючого потоку потрiйної гiбридної нанорiдини Cu-Al2O3-TiO2/H2O мiж двома паралельними пластинами в пористому середовищi дарсi з в’язкою дисипацiєю та джерелом тепла. Східно-європейський фізичний журнал, (4), 86-97. https://doi.org/10.26565/2312-4334-2024-4-08