Дослідження пружних, магнітних, термодинамічних та електронних властивостей кубічних антиперовскітів XNNi3 (X: Cd, In)

  • Жонаід Бентунес Факультет точних наук і комп’ютерних наук, Університет Абдельхаміда Ібн Бадіса, Мостаганем, Алжир https://orcid.org/0000-0003-2660-7102
  • Амал Аббад Лабораторія технології та властивостей твердих тіл, факультет природничих наук і технологій, Університет Абдельхаміда Ібн Бадіса, Мостаганем, Алжир https://orcid.org/0009-0006-1622-5564
  • Віссам Бенстаалі Лабораторія технології та властивостей твердих тіл, факультет природничих наук і технологій, Університет Абдельхаміда Ібн Бадіса, Мостаганем, Алжир https://orcid.org/0000-0003-4634-6210
  • Хейра Бахнес Лабораторія технології та властивостей твердих тіл, факультет природничих наук і технологій, Університет Абдельхаміда Ібн Бадіса, Мостаганем, Алжир https://orcid.org/0009-0007-3676-1126
  • Нуреддін Саїді Лабораторія технології та властивостей твердих тіл, факультет природничих наук і технологій, Університет Абдельхаміда Ібн Бадіса, Мостаганем, Алжир https://orcid.org/0009-0004-5343-8572
Ключові слова: антиперовскіти, структура електронної смуги, пружні константи, розрахунки перших принципів, термодинамічні властивості

Анотація

Теорія функціонала густини використовується для дослідження структурних, електронних, термодинамічних і магнітних властивостей кубічних антиперовскітів InNNi3 і CdNNi3. Пружні та електронні властивості були визначені за допомогою підходів узагальненої градієнтної апроксимації (GGA) та локальної спінової апроксимації (LSDA). Для вивчення теплових і вібраційних ефектів використовується квазігармонічна модель Дебая з використанням набору розрахунків повної енергії та об’єму. Результати показують, що дві сполуки є міцними пластичними та задовольняють критерії Борна-Хуанга, тому вони механічно стабільні за нормальних умов. Електронні властивості показують, що дві досліджувані сполуки є металевими та немагнітними. Було передбачено тепловий вплив на об’ємний модуль, теплоємність, теплове розширення та температуру Дебая.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

C. Shang, X. Xiao, and Q. Xu“, Coordination chemistry in modulating electronic structures of perovskite-type oxide nanocrystals for oxygen evolution catalysis,” Coordination Chemistry Reviews, 485, 215109(2023). https://doi.org/10.1016/j.ccr.2023.215109

Z.-Y. Chen, N.-Y. Huang, and Q. Xu “Metal halide perovskite materials in photocatalysis: Design strategies and applications,” Coordination Chemistry Reviews, 481, 215031 (2023). https://doi.org/10.1016/j.ccr.2023.215031

C. Ana, C. Dutra, and J.A. Dawson, “Computational Design of Antiperovskite Solid Electrolytes,” J. Phys. Chem. C, 127, 18256-18270(2023). https://doi.org/10.1021/acs.jpcc.3c04953

X. Li, Y. Zhang, W. Kang, Z. Yan, Y. Shen, and J. Huo, “Anti-perovskite nitrides and oxides: Properties and preparation,” Computational Materials Science, 225, 112188 (2023). https://doi.org/10.1016/j.commatsci.2023.112188

H.M.T. Farid, A. Mera, T.I. Al-Muhimeed, A.A. Al-Obaid, H. Albalawi, H.H. Hegazy, S.R. Ejaz, et al., “Optoelectronic and thermoelectric properties of A3AsN (A = Mg, Ca, Sr and Ba) in cubic and orthorhombic phase,” Journal of Materials Research and Technology, 13, 1495 (2021). https://doi.org/10.1016/j.jmrt.2021.05.032

S.O. Volkova, S.P.S. Berdonosov, I.K. Shamova, B. Rahaman, A. Iqbal, T.S. Dasgupta, and A.N. Vasiliev, “Thermal and magnetic properties of Cu4O(SeO3)3composed by ferrimagnetic O2Cu6units of edge-sharing OCu4tetrahedra,” Journal of Alloys and Compounds, 956, 170346 (2023). https://doi.org/10.1016/j.jallcom.2023.170346

M. Zhang, Z. Zhang, H. Cao, T. Zhang, H. Yu, J. Du, Y. Shen, et al., “Recent progress in inorganic tin perovskite solar cells,” Mater. Today Energy, 23, 100891 (2022). https://doi.org/10.1016/j.mtener.2021.100891

J.B. Goodenough, W. Gräper, F. Holtzberg, D.L. Huber, R.A. Lefever, J.M. Longo, T.R. McGuire, and S. Methfessel, Magnetic and other properties of oxides and related compounds, Landolt–Bornstein, New Series, Group III, vol. 4a, (Springer, Berlin, 1970), pp. 126–275.

K. Haddadi, A. Bouhemadoub, and L. Louail, “Ab initio investigation of the structural, elastic and electronic properties of the anti-perovskite TlNCa3,” Solid State Communications, 150, 932 (2010).https://doi.org/10.1016/j.ssc.2010.02.024

I.R. Shein, and A.L. Ivanovskii, “Electronic band structure and chemical bonding in the new antiperovskites AsNMg3 and SbNMg3”, J. Solid State Chem. 177, 61(2004). https://doi.org/10.1016/S0022-4596(03)00309-8

M. Moakafi, R. Khenata, A. Bouhemadou, F. Semari, A. Reshak, and M. Rabah, “Elastic, Electronic and Optical Properties of Cubic Antiperovskites SbNCa3 and BiNCa3”, Comput. Mater. Sci. 46(4), 1051-1057 (2009). https://doi.org/10.1016/j.commatsci.2009.05.011

A. Bouhemadou, R. Khenata, M. Chegaar, and S. Maabed, “First-principles calculations of structural, elastic, electronic and optical properties of the antiperovskite AsNMg3,” Phys. Lett. A, 371, 337 (2007). https://doi.org/10.1016/j.physleta.2007.06.030

C.M.I. Okoye, “First-principles optical calculations of AsNMg3 and SbNMg3,” Mater. Sci. Eng. B,130, 101-107 (2006). https://doi.org/10.1016/j.mseb.2006.02.066

F. Gabler, M. Kirchner, W. Schnelle, U. Schwarz, M. Schmitt, H. Rosner, R. Niewa, and Z. Anorg,“(Sr3N)E and (Ba3N)E (E = Sb, Bi): Synthesis, Crystal Structures, and Physical Properties,” Allg. Chem. 630, 2292 (2004).https://doi.org/10.1002/zaac.200400256

D.A. Papaconstantopoulos, and W.E. Pickett, “Ternary nitrides BiNCa3 and PbNCa3: Unusual ionic bonding in the antiperovskite structure,” Phys. Rev. B, 45, 4008 (1992). https://doi.org/10.1103/PhysRevB.45.4008

P.R. Vansant, P.E. Van Camp, V.E. Van Doren, and J.L. Martins, “Variable-cell-shape-based structural optimization applied to calcium nitrides”, Phys. Rev. B, 57, 7615 (1998). https://doi.org/10.1103/PhysRevB.57.7615

P.R. Vansant, P.E. Van Camp, V.E. Van Doren, and J.L. Martins, “Electronic Structure and Pressure Dependence for Some Ternary Calcium Nitrides,” Phys. Status Solidi (b), 198, 87 (1996). https://doi.org/10.1002/pssb.2221980112

P.R. Vansant, P.E. Van Camp, V.E. Van Doren, and J.L. Martins, “AsNCa3 at high pressure”, Comput. Mater. Sci, 10, 298 (1998).

B.V. Beznosikov, “Predicted nitrides with an antiperovskite structure”, J. Struct. Chem. 44, 885-888 (2003). https://doi.org/10.1023/B:JORY.0000029831.93738.b1

K. Haddadi, A. Bouhemadou, L. Louail, S. Maabed, and D. Maouche, “Structural and elastic properties under pressure effect of the cubic antiperovskite compounds ANCa 3(A = P, As, Sb, and Bi),” Phys. Lett. A, 373, 1777-1781 (2009). https://doi.org/10.1016/j.physleta.2009.03.016

K. Haddadi, A. Bouhemadou, L. Louail, and Y. Medkour, “Structural, elastic and electronic properties of XNCa3 (X = Ge, Sn and Pb) compounds,” Solid State Commun. 149, 619 (2009). https://doi.org/10.1016/j.ssc.2009.01.025

I. Ahmad, S.J. Asadabadi, A. Bouhemadou, M. Bilal, R. Ahmad, “Electronic Properties of Antiperovskite Materials from State-of-the-Art Density Functional Theory,” Journal of Chemistry, 2, 1(2015). https://doi.org/10.1155/2015/495131

K. Haddadi, A. Bouhemadou, L. Louail, F. Rahal, and S. Maabed, “Prediction study of the structural, elastic and electronic properties of ANSr3 (A= As, Sb and Bi),” Comput. Mater. Sci.46, 881-886 (2009). https://doi.org/10.1016/j.commatsci.2009.04.028

W. Kohn, and L.S. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev. A, 140, 1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

K. Schwarz, and P. Blaha, “Solid state calculations using WIEN2k”, Computational Materials Science, 28, 259-273 (2003). https://doi.org/10.1016/S0927-0256(03)00112-5

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K-An Augmented plane wave & Local Orbital Program for Calculating Crystal Properties, (Techn. Universitat Wien, Austria, 2001).

O.K. Andersen, “Linear methods in band theory,” Phys. Rev. B, 12, 3060 (1975). https://doi.org/10.1103/PhysRevB.12.3060

C.J. Howard, B. J. Kennedy, and B.C. Chakoumakos, “Neutron powder diffraction study of rhombohedral rare-earth aluminates and the rhombohedral to cubic phase transition,” Journal of Physics-Condensed Matter, 12, 349 (2000). https://doi.org/10.1088/0953-8984/12/4/301

F.D. Murnaghan, “The Compressibility of Media under Extreme Pressures,” Proc. Natl. Acad. Sci. USA, 30, 5390 (1944). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1078704/pdf/pnas01666-0028.pdf

J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, “Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces,” Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

U. Von Barth, and L. Hedin, “A local exchange-correlation potential for the spin polarized case,” J. Phys C: Solid State Phys. 5, 1629 (1972). https://doi.org/10.1088/0022-3719/5/13/012

W.H. Cao, B. He, C.Z. Liao, L.H. Yang, L.M. Zeng, and C. Dong, “Preparation and properties of antiperovskite-type nitrides: InNNi3 and InNCo3,” J. Solid State Chem. 182, 3353-3357 (2009). https://doi.org/10.1016/j.jssc.2009.10.002

M. Uehara, A. Uehara, K. Kozawa, T. Yamazaki, and Y. Kimishima, “New antiperovskite superconductor ZnNNi3, and related compounds CdNNi3 and InNNi3,” Physica C, 470, 688 (2010). https://doi.org/10.1016/j.physc.2009.11.131

Z.F. Hou, “Elastic properties and electronic structures of antiperovskite-type InNCo3 and IInNNi3,” Solid State Communications 150, 1874-1879 (2010). https://doi.org/10.1016/j.ssc.2010.07.047

V. Kanchana, G. Vaitheeswaran, A. Svane, and A. Delin, “First-principles study of elastic properties of CeO2, ThO2 and PoO2”, J. Phys. Condens. Matter, 18, 9615 (2006). https://doi.org/10.1088/0953-8984/18/42/008

B. Ghebouli, M.A. Ghebouli, A. Bouhemadou, M. Fatmi, R. Khenata, D. Rached, T. Ouahrani, and S. Bin-Omran, “Theoretical prediction of the structural, elastic, electronic, optical and thermal properties of the cubic perovskites CsXF3 (X = Ca, Sr and Hg) under pressure effect,” Solid State Sciences, 14, 903-913 (2012). https://doi.org/10.1016/j.solidstatesciences.2012.04.019

F. El Haj Hassan, and H. Akbarzadeh, “Ground state properties and structural phase transition of beryllium chalcogenides,” Comput. Mater. Sci. 35, 423 (2006). https://doi.org/10.1016/j.commatsci.2005.02.010

R. Khenata, A. Bouhemadou, M. Sahnoun, Ali.H. Reshak, H. Baltache, and M. Rabah, “Elastic, electronic and optical properties of ZnS, ZnSe and ZnTe under pressure”, Comput. Mater. Sci. 38, 29 (2006). https://doi.org/10.1016/j.commatsci.2006.01.013

A. Bouhemadou, R. Khenata, M. Kharoubi, T. Seddik, A.H. Reshak, and Y. Al-Douri, “FP-APW + lo calculations of the elastic properties in zinc-blende III-P compounds under pressure effects,” Comput. Mater. Sci. 45, 474 (2009). https://doi.org/10.1016/j.commatsci.2008.11.013

M. Born, and K. Huang, Dynamical Theory of Crystal Lattices, (Clarendon, Oxford, 1956).

J.P. Watt, and L. Peselnick, “Clarification of the Hashin‐Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries,” J. Appl. Phys. 51, 1525(1980).

S.F. Pugh, “Relations between the elastic moduli and the plastic properties of polycrystalline pure metals,” Philos. Mag. 45, 823-843 (1954). https://doi.org/10.1080/14786440808520496

M.A. Blanco, E. Francisco, and V. Luaňa, “GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model,” Comput. Phys. Commun. 158, 57 (2004). https://doi.org/10.1016/j.comphy.2003.12.001

M.A. Blanco, A.M. Pendás, E. Francisco, J. M. Recio, and R. Franco, “Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3,” J. Mol. Struct. Theochem. 368, 245 (1996). https://doi.org/10.1016/S0166-1280(96)90571-0

M. Flórez, J.M. Recio, E. Francisco, M.A. Blanco, and A.M. Pendás, “First-principles study of the rocksalt–cesium chloride relative phase stability in alkali halides,”, Phys. Rev. B, 66, 144112 (2002). https://doi.org/10.1103/PhysRevB.66.144112

E. Francisco, J.M. Recio, M.A. Blanco, A. Martín Pendás, and A. Costalesm, “Quantum-Mechanical Study of Thermodynamic and Bonding Properties of MgF2,” J. Phys. Chem. A, 102, 1595-1601 (1998). https://doi.org/10.1021/jp972516j

E. Francisco, M.A. Blanco, and G. Sanjurjo, “Atomistic simulation of SrF2 polymorphs,” Phys. Rev. B, 63, 094107 (2001). https://doi.org/10.1103/PhysRevB.63.094107

R. Hill, “The Elastic Behaviour of a Crystalline Aggregate,” Proc. Phys. Soc. London A, 65, 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307

A.T. Petit, and P.L. Dulong, “Recherches de la Theorie de la Chaleur,” Ann. Chim. Phys. 10, 395 (1819).

Опубліковано
2024-12-08
Цитовано
Як цитувати
Бентунес, Ж., Аббад, А., Бенстаалі, В., Бахнес, Х., & Саїді, Н. (2024). Дослідження пружних, магнітних, термодинамічних та електронних властивостей кубічних антиперовскітів XNNi3 (X: Cd, In). Східно-європейський фізичний журнал, (4), 262-273. https://doi.org/10.26565/2312-4334-2024-4-27