Неплоский всесвiт Фрiдмана-Леметра-Робертсона-Уокера з голографiчною темною енергiєю Барроу

  • Чандра Рекха Маханта Факультет математики, Унiверситет Гаухатi, Iндiя https://orcid.org/0000-0002-8019-8824
  • Джой Пракаш Медхi Факультет математики, Унiверситет Гаухатi, Iндiя https://orcid.org/0009-0004-5275-5330
  • Раджашрi Маханта Факультет математики, Унiверситет Гаухатi, Iндiя https://orcid.org/0009-0009-2656-115X
Ключові слова: Всесвiт Фрiдмана-Леметра-Робертсона-Уокера, гiбридний закон розширення, голографiчна темна енергiя Барроу, холодна темна матерiя, рiвняння параметра стану

Анотація

In this paper, we study a non-flat Friedmann-Lemaitre-Robertson-Walker (FLRW) universe filled with cold dark matter and Barrow holographic dark energy. We assume the Hubble horizon as IR cutoff and the scale factor to obey a hybrid expansion law to construct a cosmological model within the framework of General Relativity. The physical and geometrical properties of the model are discussed by studying the evolution of various parameters of cosmological importance. The behaviour of the dark energy equation of state parameter  wDE is also studied for both interacting and non-interacting Barrow holographic dark energy. We observe that the Barrow exponent ∆ significantly affects the dark energy equation of state parameter which in turn exhibits the behaviour of quintessence and phantom dark energy. The evolution of the jerk parameter is also studied.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

S. Perlmutter et al., ”Measurements of Ω and Λ from 42 high redshift supernovae,” Astrophys. J. 517, 565-586 (1999). https://doi.org/10.1086/307221

A.G. Riess, et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009-1038 (1998). https://doi.org/10.1086/300499

G.F. Smoot, et al., “Structure in the COBE differential microwave radiometer first year maps,” Astrophys. J. 396, L1 (1992). https://repository.hkust.edu.hk/ir/Record/1783.1-81009

C.L. Bennett, et al., “First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results,” Astrophys. J. Suppl. Ser. 148, 1-27 (2003). https://doi.org/10.1086/345346

D.N. Spergel, et al., [WMAP Collaboration], “First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters,” Astrophys. J. Suppl. 148, 175 (2003). https://doi.org/10.1086/377226

K. Abazajian, et al.,“The second data release of the sloan digital sky survey,” Astron. J. 128, 502 (2004). https://dx.doi.org/10.1086/421365

M. Li, “A Model of holographic dark energy,” Phys. Lett. B, 603, 1 (2004). https://doi.org/10.1016/j.physletb.2004.10.014

S. Wang et al., “Holographic dark energy,” Phys. Rep. 696, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.003

G.’t Hooft, “Dimensional reduction in quantum gravity,” arXiv preprint (2009). https://doi.org/10.48550/arXiv.gr-qc/9310026

L. Susskind, “The World as a hologram,” J. Math. Phys. 36, 6377 (1995). hep-th/9409089. https://doi.org/10.1063/1.531249

R. Bousso,“The holographic principle”, Rev. Mod. Phys. 74, 825 (2002). https://doi.org/10.1103/RevModPhys.74.825

W. Fischler, and L. Susskind,“Holography and cosmology,” https://doi.org/10.48550/arXiv.hep-th/9806039

J.D. Barrow, “The Area of a Rough Black Hole,” Phys. Lett. B, 808, 135643 (2020). https://doi.org/10.1016/j.physletb.2020.135643

E.N. Saridakis,“Barrow holographic dark energy,” Phys. Rev. D, 102, 123525 (2020). https://doi.org/10.1103/PhysRevD.102.123525

E.N. Saridakis, “Modified cosmology through spacetime thermodynamics and Barrow horizon entropy,” Journal of Cosmology and Astroparticle Physics, 07, 31 (2020). https://dx.doi.org/10.1088/1475-7516/2020/07/031

S. Srivastava, and U. K. Sharma, “Barrow holographic dark energy with Hubble horizon as IR cutoff,” Int. J. Geom. Meth. Mod. Phys. 18, 2150014 (2020). https://doi.org/10.1142/S0219887821500146

M. Srivastava, et al.,“Barrow Holographic Dark Energy with Hybrid Expansion Law,” Gravitation and Cosmology, 28, (2022). https://doi.org/10.1134/S020228932201011X

U.K. Sharma, et al., “Barrow agegraphic dark energy,” Int. J. Mod. Phys. D, 30, 2150021 (2021). https://doi.org/10.1142/S0218271821500218

Q. Huang et al., “Dynamical analysis and statefinder of Barrow holographic dark energy,” Eur. Phys. J. C, 81, 686 (2021). https://doi.org/10.1140/epjc/s10052-021-09480-3

A. Sarkar, and S. Chattopadhyay, “The barrow holographic dark energy-based reconstruction of f(R) gravity and cosmology with Nojiri–Odintsov cutoff,” Int. J. Geom.Meth. Mod. Phys. 18, 2150148 (2021). https://doi.org/10.1142/S0219887821501486

P. Adhikary et al., “Barrow Holographic Dark Energy in non-flat Universe,” https://doi.org/10.1103/PhysRevD.104.123519

O¨ . Akarsu et al.,”Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints,” JCAP, 01, 022 (2014). https://doi.org/10.1088/1475-7516/2014/01/022

Опубліковано
2024-12-08
Цитовано
Як цитувати
Маханта, Ч. Р., МедхiД. П., & Маханта, Р. (2024). Неплоский всесвiт Фрiдмана-Леметра-Робертсона-Уокера з голографiчною темною енергiєю Барроу. Східно-європейський фізичний журнал, (4), 61-70. https://doi.org/10.26565/2312-4334-2024-4-05