Покращення молекулярно-структурних та лінійних/нелінійних оптичних характеристик нанокомпозитних плівок хітозану/діоксиду титану для пакування та оптоелектронних застосувань
Анотація
Поточне дослідження спрямоване на синтез та характеристику нанокомпозитних плівок хітозану та діоксиду титану з точки зору молекулярної структури, теплових та оптичних властивостей для використання в упаковці продуктів та оптоелектронних застосувань. Інфрачервона спектроскопія з перетворенням Фур’є (FTIR) була використана для вивчення взаємодії між TiO2-NPs і хітозаном, і аналіз підтвердив, що TiO2-NPs взаємодіяли з хітозаном і продемонстрували хорошу сумісність. Диференціальна скануюча калориметрія та термогравіметричний аналіз показали, що збільшення концентрації TiO2-NP покращує термічну стабільність нанокомпозитів. Лінійні оптичні властивості в діапазоні UV-Vis (200–800 нм) вимірювали спектрофотометрично. Нижче 400 нм спектри пропускання нанокомпозитів демонструють знижений ступінь прозорості, що вказує на їх здатність повністю блокувати пропускання УФ-світла. Модель Таука була використана для ідентифікації типів електронних переходів у зразках. Модель одного осцилятора була використана для дослідження енергії та параметрів дисперсії. Також були досліджені нелінійно-оптичні властивості. UV-Vis в області (360-410 нм), аналіз показав, що збільшення концентрації TiO2-NPs від 0 до 12 мас.% зменшує край поглинання з 2,716 до 2,043 еВ, зменшує пряме (3,282 до 2,798 еВ) і непрямі (від 2,417 до 1,581 еВ) енергетичні заборонені зони, збільшили енергію Урбаха з 0,692 до 1,295 еВ, зменшили енергію дисперсії з 11,324 до 5,621 еВ, зменшили енергію одного осцилятора з 6,308 до 5,393 еВ і покращили інші лінійні та нелінійні параметри . Результати підтверджують використання нанокомпозитних плівок CS/TiO2 в пакувальній промисловості та різноманітних оптичних застосуваннях.
Завантаження
Посилання
Y. Kamari, and M. Ghiaci, “Preparation and characterization of ibuprofen/modified chitosan/TiO2 hybrid composite as a controlled drug-delivery system”, Microporous and Mesoporous Mater. 234, 361–369 (2016). https://doi.org/10.1016/j.micromeso.2016.07.030
S. Kumar, K. Prasad, J.M. Gil, A.J.F.N. Sobral, and J. Koh,“Mesoporous zeolite-chitosan composite for enhanced capture and catalytic activity in chemical fixation of CO2”, Carbohydr. Polym. 198, 401–406 (2018). https://doi.org/10.1016/j.carbpol.2018.06.100
V.G.L. Souza, A.L. Fernando, J.R.A. Pires, P.F. Rodrigues, A.A.S. Lopes, and F.M.B., Fernandes, “Physical properties of chitosan films incorporated with natural antioxidants”, Ind. Crop. Prod. 107, 565–572 (2017). http://dx.doi.org/10.1016/j.indcrop.2017.04.056
J. Salvada, B. Alke, C. Brazinha, V.D. Alves, and I.M. Coelhoso,“Development and characterisation of arabinoxylan-based composite films”, Coatings, 12, 813 (2022). https://doi.org/10.3390/coatings12060813
Y. Xing, X. Li, X. Guo, W. Li, J. Chen, Q. Liu, Q. Xu, Q. Wang, H. Yang, Y. Shui, and X. Bi, “Effects of different TiO2 nanoparticles concentrations on the physical and antibacterial activities of chitosan-based coating film”, Nanomaterials 10, 1365 (2020). https://doi.org/10.3390/nano10071365
V.-B. Hoa, D.-H. Song, K.-H. Seol, S.-M. Kang, H.-W. Kim, J.-H., Kim, S.-S. Moon, and S.-H. Cho, “Application of a newly developed chitosan/oleic acid edible coating for extending shelf-life of fresh pork”, Foods, 11, 1978 (2022). https://doi.org/10.3390/foods11131978
S.B. Aziz, M.M. Nofal, H.O. Ghareeb, E.M.A. Dannoun, S.A., Hussen, J.M. Hadi, K.K. Ahmed, and A.M. Hussein, “Characteristics of poly(vinyl alcohol) (PVA) based composites integrated with green synthesized Al3+-metal complex: structural, optical, and localized density of state analysis”, Polymers, 13, 1316 (2021). https://doi.org/10.3390/polym13081316
E.M. Abdelfattah, H. Elzanaty, W.B. Elsharkawy, M.A. Azzam, Z.M. Elqahtani, S. Alotibi, M. Alyami, and T. Fahmy, “Enhancement of the structure, thermal, linear/nonlinear optical properties, and antibacterial activity of poly(vinyl alcohol)/chitosan/ZnO nanocomposites for eco-friendly applications”, Polymers, 15, 4282 (2023). https://www.mdpi.com/journal/polymers
A. Nešić, G. Cabrera-Barjas, S. Dimitrijević-Branković, S. Davidović, N. Radovanović, and C. Delattre, “Prospect of polysaccharidebased materials as advanced food packaging”, Molecules, 25, 135 (2020). https://doi.org/10.3390/molecules25010135
T.M. Vieira, M., Moldão-Martins, and V.D. Alves,“Design of chitosan and alginate emulsion-based formulations for the production of monolayer crosslinked edible films and coatings”, Foods, 10, 1654 (2021). https://doi.org/10.3390/foods10071654
R.A. Ilyas, H.A. Aisyah, A.H. Nordin, N. Ngadi, M.Y.M. Zuhri, M.R.M. Asyraf, S.M. Sapuan, E.S. Zainudin, S. Sharma, H. Abral, M. Asrofi, E. Syafri, N.H. Sari, M. Rafidah, S.Z.S. Zakaria, M.R. Razman, N. Abd Majid, Z. Ramli, A. Azmi, S.P. Bangar, and R. Ibrahim, “Natural-fiber-reinforced chitosan, chitosan blends and their nanocomposites for various advanced applications”, Polymers, 14, 874 (2022). https://doi.org/10.3390/polym14050874
E.F.M. El-Zaidia, M.S. Al-Kotb, and I.S. Yahia, “Deposition of nanostructured methyl violet-10B films/FTO: Optical limiting and optical linearity/nonlinearity”, Mater. Chem. Phys. 240, 122074 (2020). https://doi.org/10.1016/j.matchemphys.2019.122074
M.V. Vijisha, V.V. Sini, N.K. Siji Narendran, and K. Chandrasekharan, “Enhanced nonlinear optical response from dihydroxy(5,10,15,20-tetraphenyl porphyrinato)tin(IV) or SnTPP in a fully plastic photonic crystal microcavity”, Phys. Chem. Chem. Phys. 19, 29641–29646 (2017). https://doi.org/10.1039/C7CP06455A
M. Yaseen, Z. Farooq, M. Ahmad, M. Abdullah Sultan, M.A. Raza, J.-Y. Winum, M. Mustafa, M.H.R. Mahmood, M. Tayyab, M.A. Iqbal, and M.S. Mahr, “Synthesis and investigation of linear and nonlinear optical properties of an octahedral metalloporphyrin”, Opt. Mater. 149, 115092 (2024). https://doi.org/10.1016/j.optmat.2024.115092
M.A. Neves, J. Hashemi, T. Yoshino, K. Uemura, and M. Nakajima, “Development and characterization of chitosan-nanoclay composite films for enhanced gas barrier and mechanical properties”, J. Food Sci. Nutr. 2, 100007 (2016). https://www.researchgate.net/publication/299488601
G. Xiao, X. Zhang, W. Zhang, S. Zhang, H. Su, and T. Tan, “Visible-light-mediated synergistic photocatalytic antimicrobial effects and mechanism of Ag-nanoparticles@chitosan-TiO2 organic-inorganic composites for water disinfection”, Appl. Catal. B, 170, 255–262 (2015). https://doi.org/10.1016/j.apcatb.2015.01.042
P. Kaewklin, U. Siripatrawan, A. Suwanagul, and Y.S. Lee, “Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit”, Biol. Macromol. 112, 523–529 (2018). https://doi.org/10.1016/j.ijbiomac.2018.01.124
H. Haghighi, S. Biard, F. Bigi, R. De Leo, E. Bedin, F. Pfeifer, H.W. Siesler, F. Licciardello, and A. Pulvirenti, “Comprehensive characterization of active chitosan-gelatin blend films enriched with different essential oils”, Food Hydrocoll. 95, 33–42 (2019). https://doi.org/10.1016/j.foodhyd.2019.04.019
S. Yadav, G.K. Mehrotra, P. Bhartiya, A. Singh, and P.K. Dutta, “Preparation, physicochemical and biological evaluation of quercetin-based chitosan-gelatin film for food packaging”, Carbohydr. Polym. 227, 115348 (2020). https://doi.org/10.1016/j.carbpol.2019.115348
M. Islam, S. Masum, M.M. Rahman, A.I. Molla, A.A. Shaikh, and S.K. Roy, “Preparation of chitosan from shrimp shell and investigation of its properties”, Int. J. Basic Appl. Sci. 11, 116–130 (2011).
S.B. Aziz, O.Gh. Abdullah, and M.A. Rasheed, “A novel polymer composite with a small optical band gap: New approaches for photonics and optoelectronics”, J. Appl. Polym. Sci. 134, 44847 (2017). https://doi.org/10.1002/app.44847
S.F. Hamza, M.M. El-Sawy, N.A. Alian, and N.O. Shaker, “Synthesis and evaluation of performance characteristics green composites from sustainable fatty chitosan graft copolymer with acrylic acid for wastewater treatment”, Egypt. J. Chem. 64, 6007–6015 (2021). https://doi.org/10.21608/EJCHEM.2021.73857.3656
Q. Cao, Y. Zhang, W. Chen, X. Meng, and B. Liu, “Hydrophobicity and physicochemical properties of agarose film as affected by chitosan addition”, Int. J. Biol. Macromol. 106, 1307–1313 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.134
S. Mafirad, M.R. Mehrnia, P. Zahedi, and S.-N. Hosseini, “Chitosan-based nanocomposite membranes with improved properties: Effect of cellulose acetate blending and TiO2 nanoparticles incorporation”, Polym. Compos. 39, 4452-4466 (2018). https://doi.org/10.1002/pc.24539
M. Mujtaba, R.E. Morsi, G. Kerch, M.Z. Elsabee, M. Kaya, J. Labidi, and K.M. Khawar, “Current advancements in chitosan-based film production for food technology; A review”, Int. J. Biol. Macromol. 121, 889–904 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.109
M.E. Ergun, E. Ozen, N. Yildirim, B. Dalkilic, and E. Baysal, “Mechanical and thermal properties of polyvinyl acetate foams reinforced with biopolymers”, Cell. Polym. 42, 156–173 (2023). https://doi.org/10.1177/02624893231193501
Z. Hu, P. Hong, M. Liao, S. Kong, N. Huang, C. Ou, and S. Li, “Preparation and characterization of chitosan-agarose composite films”, Materials, 9, 816 (2016). https://doi.org/10.3390/ma9100816
X. Zhang, G. Xiao, Y. Wang, Y. Zhao, H. Su, and T. Tan, “Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications”, Carbohydr. Polym. 169, 101–107 (2017). http://dx.doi.org/10.1016/j.carbpol.2017.03.073
B. Cheba, “Chitosan: Properties, modifications and food nanobiotechnology”, Procedia Manuf. 46, 652–665 (2020). https://doi.org/10.1016/j.promfg.2020.03.093
S.F. Hamza, N.A. Alian, M.M. Elsawy, and N. Shaker, “Preparation, characterization and amtimicrobial activity of chitosan-fatty acid derivatives as a drug delivery system: intercelation and in vitro release of ciprofloxacin”, Al-Azhar Bull. Sci. 32, 47 56 (2021). https://doi.org/10.21608/absb.2021.72129.1110
M.S. Hanafy, W.M. Desoky, E.M. Hussein, N.H. El-Shaer, M. Gomaa, A.A. Gamal, M.A. Esawy, and O.W. Guirguis, “Biological applications study of bio-nanocomposites based on chitosan/TiO2 nanoparticles polymeric films modified by oleic acid”, J. Biomed. Mater. Res. 109, 232–247 (2021). doi:10.1002/jbm.a.37019
M. Bajić, T.Ročnik, A. Oberlintner, F. Scognamiglio, U. Novak, and B. Likozar, “Natural plant extracts as active components in chitosan-based films: A comparative study”, Food Packag. Shelf Life, 21, 100365 (2019). https://doi.org/10.1016/j.fpsl.2019.100365
B. Tian, and Y. Liu, “Chitosan-based biomaterials: From discovery to food application”, Polym. Adv. Technol. 31, 2408–2421 (2020). https://doi.org/10.1002/pat.5010
S. Moradi, H. Hamedi, A.E. Tonelli, and M.W. King, “Chitosan/graphene oxide composite films and their biomedical and drug delivery applications: A review”, Appl. Sci. 11, 7776 (2021). https://doi.org/10.3390/app11177776
S.M. Bashir, G.A. Rather, A. Patrício, Z. Haq, A.A. Sheikh, M.Z.H. Shah, H. Singh, A.A. Khan, S. Imtiyaz, S.B. Ahmad, S. Nabi, R. Rakhshan, S. Hassan, and P. Fonte, “Chitosan nanoparticles: A versatile platform for biomedical applications”, Materials, 15, 6521–6529 (2022). https://doi.org/10.3390/ma15196521
K. Pieklarz, and K.Modrzejewska, “SARS-CoV-2 – The latest global threat and the prospect of COVID-19 therapy with the use of chitosan”,Prog. Chem. Appl. Chitin Deriv. 26, 41–60 (2021).
S. Valizadeh, M. Naseri, S. Babaei, S.M.H. Hosseini, and A. Imani, “Development of bioactive composite films from chitosan and carboxymethyl cellulose using glutaraldehyde, cinnamon essential oil and oleic acid”, Int. J. Biol. Macromol. 134, 604 612 (2019). https://doi.org/10.1016/j.ijbiomac.2019.05.071
L.A.M. van den Broek, R.J.I. Knoop, F.H.J. Kappen, and C.G. Boeriu, “Chitosan films and blends for packaging material”, Carbohydr. Polym. 116, 237–242 (2015). https://doi.org/10.1016/j.carbpol.2014.07.039
E. Le Goué, C. Gardrat, M. Romain, M. Rollini, C.Moresoli, and V. Coma, “Effect of oleic acid on the release of tetrahydrocurcumin in chitosan-based films”, Food Hydrocoll. 124, 107202 (2022). https://doi.org/10.1016/j.foodhyd.2021.107202
K.S. Siddiqi, A. Rahman, Tajuddin, and A. Husen, “Biogenic fabrication of iron/iron oxide nanoparticles and their application”, Nanoscale Res. Lett. 11, 498 (2016). https://doi.org/10.1186/s11671-016-1714-0
K.S. Siddiqi, and A. Husen, “Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system”, J. Trace Elements Med. Biol. 40, 10–23 (2017). https://doi.org/10.1016/j.jtemb.2016.11.012
I. Khan, K. Saeed, andI. Khan, “Nanoparticles: Properties, applications and toxicities”, Arab. J. Chem. 12, 908–931 (2019). https://doi.org/10.1016/j.arabjc.2017.05.011
F. Mohammad, H.A. Al-Lohedan, and H.N. Al-Haque, “Chitosan-mediated fabrication of metal nanocomposites for enhanced biomedical applications”, Adv. Mater. Lett. 8, 89-100 (2017). https://doi.org/10.5185/amlett.2017.6925
K.S. Siddiqi, A. Husen, and R.A.K. Rao, “A review on biosynthesis of silver nanoparticles and their biocidal properties”, J. Nanobiotechnol. 16, 14 (2018). https://doi.org/10.1186/s12951-018-0334-5
F. Gami, N. Algethami, H.M. Ragab, A. Rajah, and A.E. Tarabiah, “Structural, optical and electrical studies of chitosan/polyacrylamide blend filled with synthesized selenium nanoparticles”, J. Mol. Struct. 1257, 132631 (2022). https://doi.org/10.1016/j.molstruc.2022.132631
S. Sau, and S. Kundu, “Variation in structure and properties of poly(vinyl alcohol) (PVA) film in the presence of silver nanoparticles grown under heat treatment”, J. Mol. Struct. 1250, 131699 (2022). https://doi.org/10.1016/j.molstruc.2021.131699
N.R. Saha, G. Sarkar, I. Roy, D. Rana, A. Bhattacharyya, A. Adhikari, A. Mukhopadhyay, and D. Chattopadhyay, “Studies on methylcellulose/pectin/montmorillonite nanocomposite films and their application possibilities”, Carbohydr. Polym. 136, 1218–1227 (2016). https://doi.org/10.1016/j.carbpol.2015.10.046
M. Yang, Y. Xia, Y. Wang, X. Zhao, Z. Xue, F. Quan, C. Geng, and Z. Zhao, “Preparation and property investigation of crosslinked alginate/silicon dioxide nanocomposite films”, J. Appl. Polym. Sci. 133, 43489 (2016). https://doi.org/10.1002/app.43489
W. Ma, J. Li, Y. Liu, X. Ren, Z.G. Gu, Z. Xie, and J. Liang, “Preparation and characterization of excellent antibacterial TiO2/N-halamines nanoparticles”, Colloids Surf. A Physicochem. Eng. Asp. 506, 284–290 (2016). https://doi.org/10.1016/j.colsurfa.2016.06.055
E.M. Hussein, W.M. Desoky, M.F. Hanafy, and O.W. Guirguis, “Effect of TiO2 nanoparticles on the structural configurations and thermal, mechanical, and optical properties of chitosan/TiO2 nanoparticle composites”, J. Phys. Chem. Solids, 152, 109983 (2021). https://doi.org/10.1016/j.jpcs.2021.109983
L.M. Anaya-Esparza, J.M. Ruvalcaba-Gómez, C.I. Maytorena-Verdugo, N. González-Silva, R. Romero-Toledo, S. Aguilera-Aguirre, A. Pérez-Larios, and A.E. Montalvo-González, “Chitosan-TiO2: A versatilehybrid composite”, Materials, 13, 811 (2020). https://doi.org/10.3390/ma13040811
V.K. Yemmireddy, G.D. Farrell, and Y.C. Hung, “Development of titanium dioxide (TiO2) nanocoatings on food contact surfaces and method to evaluate their durability and photocatalytic bactericidal property”, J. Food Sci. 80, 1903–1911 (2015). https://doi.org/10.1111/1750-3841.12962
S.A. Oleyaei, H. Almasi, B. Ghanbarzadeh, and A.A. Moayedi, “Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties”, Carbohydr. Polym. 152, 253–262 (2016). https://doi.org/10.1016/j.carbpol.2016.07.040
A. Khalilnezhad, H. Rezvani, P. Ganji, and Y. Kazemzadeh, “A Complete experimental study of oil/water interfacial properties in the presence of TiO2 nanoparticles and different ions”, Oil Gas Sci. Technol. 74, 39 (2019). https://doi.org/10.2516/ogst/2019007
Q. Chen, Z. Ye, L. Tang, T. Wu, Q. Jiang, and N. Lai, “Synthesis and solution properties of a novel hyperbranched polymer based on chitosan for enhanced oil recovery”, Polymers, 12, 2130 (2020). https://doi.org/10.3390/polym12092130
G.S. Negi, S.Anirbid, and P. Sivakumar, “Applications of silica and titanium dioxide nanoparticles in enhanced oil recovery: Promises and challenges”, Petroleum Res. B, 224–246 (2021). https://doi.org/10.1016/j.ptlrs.2021.03.001
A.D. Dos Santos Francisco, K.C.B. Maia, J.G. Vieira Moura, R.S. Veiga Nascimento, F. da Silva Lima, and D. Grasseschi, “Chitosan derivatives as surfactant carriers for enhanced oil recovery – Experimental and molecular dynamic evaluations of polymer-surfactant interactions”, Colloids Surf. A Physicochem. Eng. Asp. 671, 131644 (2023). https://doi.org/10.1016/j.colsurfa.2023.131644
Y.H. Yun, J.W. Yun, S.D. Yoon, and H.S. Byun, “Physical properties and photocatalytic activity of chitosan-based nanocomposites added titanium oxide nanoparticles”, Macromol. Res. 24, 51–59 (2016). https://doi.org/10.1007/s13233-016-4008-6
K.T. Karthikeyan, A. Nithya, and K. Jothivenkatachalam, “Photocatalytic and antimicrobial activities of chitosan-TiO2, nanocomposite”, Int. J. Biol. Macromol. 104, 1762–1773 (2017).
T. Kamal, Y. Anwar, S.B. Khan, M.T.S. Chani, and A.M. Asiri, “Dye adsorption and bactericidal properties of TiO2/Chitosan coating layer”, Carbohydr. Polym. 148, 153–160 (2016). https://doi.org/10.1016/j.carbpol.2016.04.042
H. Chang, J. Lv, H. Zhang, B. Zhang, W. Wei, and Y. Qiao, “Photoresponsive colorimetric immunoassay based on chitosan modified AgI/TiO2 heterojunction for highly sensitive chloramphenicol detection”,Biosens. Bioelectron. 87, 579–586 (2017). https://doi.org/10.1016/j.bios.2016.09.002
W. Xu, W. Xie, X. Huang, X. Chen, N. Huang, X. Wang, and J. Liu, “The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research”, Food Chem. 221, 267–277 (2017). https://doi.org/10.1016/j.foodchem.2016.10.054
A. Mohandas, S. Deepthi, R. Biswas, and R. Jayakuma, “Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings”, Bioact. Mater. 3, 267–277 (2018). https://doi.org/10.1016/j.bioactmat.2017.11.003
U. Siripatrawan, and P. Kaewklin, “Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging”, Food Hydrocoll. 84, 125–134 (2018). https://doi.org/10.1016/j.foodhyd.2018.04.049
A. Razzaz, S. Ghorban, L. Hosayni, M. Irani, and M. Aliabadi, “Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions”, J. Taiwan Inst. Chem. Eng. 58, 333–343 (2015). https://doi.org/10.1016/j.jtice.2015.06.003
A. Spoială, C.-I. Ilie, G. Dolete, A.-M. Croitoru, V.-A. Surdu, R.-D. Truşcă, L. Motelica, O.-C. Oprea, D. Ficai, A. Ficai, E. Andronescu, and L.-M. Diţu, “Preparation and characterization of chitosan/TiO2 composite membranes as adsorbent materials for water purification”, Membranes 12, 804 (2022). https://doi.org/10.3390/membranes12080804
R. Saravanan, J. Aviles, F. Gracia, E. Mosquera, and V.K. Gupta, “Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO2/CS (Chitosan) nanocomposites”, Int. J. Biol. Macromol. 109, 1239–1245 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.125
H.H. Ibrahim, A.M. Abdelghany, M.H. Gaber, and S.A. Ali, “Optical and physical characteristics of chitosan/silver vanadate nanocomposites”, Opt. Quantum Electron. 56, 435 (2024). https://doi.org/10.1007/s11082-023-05979-z
E. Filippo, C. Carlucci, A.L. Capodilupo, P. Perulli, F. Conciauro, G.A. Corrente, G. Gigli, and G. Ciccarella, “Enhanced photocatalytic activity of pure anatase TiO2and Pt-TiO2nanoparticles synthesized by green microwave assisted route”, Mater. Res. 18, 473–481 (2015). http://dx.doi.org/10.1590/1516-1439.301914
P. Mujeeb Rahman, V.M. Abdul Mujeeb, K.Muraleedharan, and S.K. Thomas, “Chitosan/nano ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties”, Arab J. Chem. 11, 120 (2018). https://doi.org/10.1016/j.arabjc.2016.09.008
N.D. Alharbi, “Synthesis of composites from hydroxypropyl cellulose:iron (III) oxide nanoparticles”, Polym. Polym. Compos. 31, 1–12 (2023). https://doi.org/10.1177/09673911221149548
N.D. Alharbi, H.H. Amer, N.A. El Zaher, and O.W. Guirguis,“Saudi cotton fabrics treated with chitosan and different concentrations of ZnO nanoparticles: Preparation, characterization, and demonstration”, Fiber. Polym. 24, 537–554 (2023). https://doi.org/10.1007/s12221-023-00035-9
A. Olaru, T.Măluțan, U.C. Marta, M. Geba, and L. Stratulat, “Structural changes in hemp fibers following temperature, humidity and UV or gamma-ray radiation exposure”, Cellulose Chem. Technol. 50, 31–39 (2016).
N.A. El-Zaher, G.T. El-Bassyouni, M.A.Esawy, and O.W. Guirguis, “Amendments of the structural and physical properties of cotton fabrics dyed with natural dye and treated with different mordants”, J. Nat. Fibers, 18, 1247–1260 (2021). https://doi.org/10.1080/15440478.2019.1689884
I. Corazzari, R. Nisticò, F. Turci, M.G. Faga, F. Franzoso, S.Tabasso, and G. Magnacca, “Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity”, Polym. Degrad. Stab. 112, 1–9 (2015). https://doi.org/10.1016/j.polymdegradstab.2014.12.006
I. Ozsoy, A. Demirkol, A. Mimaroglu, H. Unal, and Z. Demir, “The influence of micro-and nano-filler content on the mechanical properties of epoxy composites”, Stroj. Vestn. J. Mech. E, 61, 601 (2015). https://doi.org/10.5545/SV-JME.2015.2632
L. Cui, S. Gao, X. Song, L. Huang, H. Dong, J. Liu, F. Chen, and S. Yu, “Preparation and characterization of chitosan membranes”, RSC Adv. 8, 28433–28439 (2018). https://doi.org/10.1039/c8ra05526b
A. Al-Harrasi, S.Bhtaia, M.S. Al-Azri, H.A. Makeen, M. Albratty, H.A. Alhazmi, S. Mohan, A. Sharma, and T. Behl, “Development and characterization of chitosan and porphyran based composite edible films containing ginger essential oil”, Polymers, 14, 2518 (2022). https://doi.org/10.3390/polym14091782
N.A. El-Zaher, M.S. Melegy, and O.W. Guirguis, “Thermal and structural analyses of PMMA/TiO2 nanoparticles composites”, Nat. Sci. 6, 859 (2014). https://doi.org/10.4236/NS.2014.611083
V.G.L. Souza, J.R.A. Pires, C. Rodrigues, P.F. Rodrigues, A. Lopes, R.J. Silva, J. Caldeira, M.P. Duarte, F.B. Fernandes, I.M.Coelhoso, and A.L. Fernando, “Physical and morphological characterization of chitosan/montmorillonite films incorporated with ginger essential oil”, Coatings, 9, 700 (2019). https://doi.org/10.3390/coatings9110700
V. Alizadeh, H. Barzegar, B. Nasehi, and V. Samavati, “Development of a chitosan-montmorillonite nanocomposite film containing Satureja hortensis essential oil”, Iran. Food Sci. Technol. Res. J. 13, 131–143 (2018). https://doi.org/10.22067/ifstrj.v1396i13.64248
E.M. Abdelrazek, I.S. Elashmawi, and S. Labeeb, “Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films”, Physica B, 405, 2021–2027 (2010). https://doi.org/10.1016/j.physb.2010.01.095
A.W. Coats, and J.P. Redfern, “Kinetic parameters from thermogravimetric data”, Nature, 201, 68–69 (1964).
T. Fahmy, E.O. Abdelmuttlib, M.I. Abdelhamid, W.B. Elsharkawy, Z.M. Elqahtani, and M.T. Ahmed, “TSDC of irradiated and non-irradiated cellulose acetate”, Egypt. J. Chem. 64, 2453–2468 (2021). https://doi.org/10.21608/EJCHEM.2021.57068.3228
W.B. Elsharkawy, M.T. Ahmed, E.O. Abdelmuttlib, Z.M. Elqahtani, M.A. Azzam, and T. Fahmy, “Effect of γ-irradiation on thermally stimulated depolarization current spectra of polyethylenegrafted-poly(acrylic acid)”, Radiat. Eff. Defects Solids, 177, 671–687 (2022). https://doi.org/10.1080/10420150.2022.2073880
Y. Amaregouda, K. Kamanna, and T. Gasti, “Biodegradable polyvinyl alcohol/carboxymethyl cellulose composite incorporated with l alanine functionalized MgO nanoplates: Physico chemical and food packaging features”, J Inorg OrganometPolym Mater. 32, 2040–2055 (2022). https://doi.org/10.1007/s10904-022-02261-9
A.M. El-naggar, Z.K. Heiba, M.B. Mohamed, A.M. Kamal, G. Lakshminarayana, and M. Ali Shar, “Structural, linear and nonlinear optical properties of poly (vinyl alcohol) (PVA)/polyethylene glycol (PEG)/SnS2:Y nanocomposite films”, Optik, 258, 168941 (2022). https://doi.org/10.1016/j.ijleo.2022.168941
N.A. Abdel-Zaher, G.T.El-Bassyouni,M.T.H.Moselhey, and O.W. Guirguis, “Structural, thermal and optical modifications of chitosan due to UV-ozone irradiation”, Egypt. J. Chem. 61, 447–460 (2018). https://doi.org/10.21608/ejchem.2018.2904.1241
N.D. Alharbi, and O.W. Guirguis, “Macrostructure and optical studies ofhydroxypropylcellulose in pure and nano-composites forms”, Results Phys. 15, 102637 (2019). https://doi.org/10.1016/j.rinp.2019.102637
S.B. Aziz, “Morphological and optical characteristics of chitosan(1-x):Cuox (4≤x≤12) based polymer nano-composites: Optical dielectric loss as an alternative method for Tauc’s model”, Nanomaterials, 7, 444 (2017). https://doi.org/10.3390/nano7120444
A.S. Hassanien, and I. Sharma, “Synthesis, analysis, and characterization of structural and optical properties of thermally evaporated chalcogenide a-Cu-Zn-Ge-Se thin films”, Mater. Chem. Phys. 311, 128524 (2024). https://doi.org/10.1016/j.matchemphys.2023.128524
D.J. Borah, and A.T.T. Mostako, Investigation on dispersion parameters of Molybdenum Oxide thin films via Wemple–DiDomenico (WDD) single oscillator model”, Appl. Phys. A 126, 818–825 (2020). https://doi.org/10.1007/s00339-020-03996-3
D.A. Nasrallah, T.H. AlAbdulaal, H.Y. Zahran, I.S. Yahia, and M.I. Mohammed, “Investigation of linear and nonlinear optical characterization of triple blended polymers incorporated with varying content of eriochrome black T dye for low-cost optical technologies and limiting absorption”, Mater. Sci. Semicond. Process. 175, 108179 (2024). https://doi.org/10.1016/j.mssp.2024.108179
J. Tauc, Optical Properties of Amorphous Semiconductors, Amorphous and Liquid Semiconductors, (Plenum Press, New York, 1979).
F.M. Amin, H. Abdel-Khalek, A.M. El-Sagheer, M. Abd-El Salam, and A.M. El-Mahalawy, “Detailed investigations on structural, spectroscopic, and optoelectronic properties of Ethyl Nile Blue thin films”, Phys. B: Conden. Matter, 642, 414141 (2022). https://doi.org/10.1016/j.physb.2022.414141
A.M. Ismail, M.I. Mohammed, and E.G. El-Metwally, “Influence of gamma irradiation on the structural and optical characteristics of Li ion-doped PVA/PVP solid polymer electrolytes”, Indian J. Phys. 93, 175–183 (2019). https://doi.org/10.1007/s12648-018-1286-1
O.Gh. Abdullah, S.B. Aziz, and M.A. Rasheed, “Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte”, Results Phys. 6, 1103–1108 (2016). https://doi.org/10.1016/j.rinp.2016.11.050
M.T. Ahmed, A. Sarhan, Z.M. Elqahtani, W.B. Elsharkawy, M.A. Azzam, and T. Fahmy, “Linear and non-linear optical parameters of copper chloride doped poly (vinyl alcohol) for optoelectronic applications”, Egypt. J. Chem. 65, 99–108 (2022). https://doi.org/10.21608/ejchem.2022.105927.4878
M. Shkir, V. Ganesh, S. AlFaify, I.S. Yahia, and H.Y. Zahran, “Tailoring the linear and nonlinear optical properties of NiO thin films through Cr3+ doping”, J. Mater. Sci.: Mater. Electron. 29, 6446–6457 (2018). https://doi.org/10.1007/s10854-018-8626-y
F.M. Ali, “Structural and optical characterization of [(PVA:PVP)-Cu2+] composite films for promising semiconducting polymer devices”, J. Mol. Struct. 1189, 352–359 (2019). https://doi.org/10.1016/j.molstruc.2019.06.055
S.H. Wemple, and M.D. DiDomenico Jr.,“Behavior of the electronic dielectric constant in covalent and ionic materials”, Phys. Rev. B, 3, 1338¬–1351 (1971). https://doi.org/10.1103/PHYSREVB.3.1338
H.Y.S. Al Zahrani, “Synthesis, optical and optoelectrical analysis of the Cu2CoSnS4 thin films as absorber layer for thin film solar cells”, J. Mater. Sci. Mater. Electron. 31, 6900–6909 (2020). https://doi.org/10.1007/s10854-020-03252-7
L.M. El Radaf, and A.S. Hassanien, “Effect of thickness on structural, optical, and optoelectrical properties of sprayed CuInSnS4 thin films as a new absorber layer for solar cells”, Physica B, 659, 414867 (2023). https://doi.org/10.1016/j.physb.2023.414867
T.S. Soliman, S.A. Vshivkov, and S.I. Elkalashy, “Structural, linear and nonlinear optical properties of Ni nanoparticles–polyvinyl alcohol nanocomposite films for optoelectronic applications”, Opt. Mater. 107, 110037 (2020). https://doi.org/10.1016/j.optmat.2020.110037
A.S. Hassanien, “Intensive linear and nonlinear optical studies of thermally evaporated amorphous thin Cu-Ge-Se-Te films”, J. Non-Cryst. Solids, 586, 121563 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121563
S.H. Alotaibi, A.S. Radwan, Y.K. Abdel-Monem, and M.M. Makhlouf, “Synthesis, thermal behavior and optical characterizations of thin films of a novel thiazole azo dye and its copper complexes”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 205, 364–375 (2018). https://doi.org/10.1016/j.saa.2018.07.043
T.A. Taha, A.A. Azab, and M.A., Sebak, “Glycerol-assisted sol-gel synthesis, optical, and magnetic properties of NiFe2O4 nanoparticles”, J. Mol. Struct. 1181, 14–18 (2019). https://doi.org/10.1016/j.molstruc.2018.12.075
M. Aslam, M. Ali Kalyar, and Z. Ali Raza, “Graphene oxides nanosheets mediation of poly(vinyl alcohol) films in tuning their structural and opto-mechanical attributes”, J. Mater. Sci. Mater. Electron. 28, 13401-13413 (2017). https://doi.org/10.1007/s10854-017-7177-y
Z.K. Heiba, A.M. El-naggar, A.M. Kamal, O.H. Abd-Elkader, and M.B. Mohamed, “Optical and dielectric properties of PVC/TiO2/TBAI ionic liquid polymer electrolyte”, Opt. Mater. 139, 113764 (2023). https://doi.org/10.1016/j.optmat.2023.113764
Авторське право (c) 2024 Осіріс В. Гіргіс, Найлаа Д. Алхарбі
Цю роботу ліцензовано за Міжнародня ліцензія Creative Commons Attribution 4.0.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).