Чисельне дослідження ефектів термофорезу та енергії активації нанорідини Максвелла над нахиленим магнітним полем, прикладеним до диска

  • Дудекула Дастагірі Бабу Кафедра математики, меморіальний коледж інженерії та технології Раджива Ганді, Нандьял, Андхра-Прадеш, Індія https://orcid.org/0000-0001-8114-3860
  • С. Венкатесварлу Кафедра математики, меморіальний коледж інженерії та технології Раджива Ганді, Нандьял, Андхра-Прадеш, Індія
  • Е. Кешава Редді Факультет математики, інженерний коледж JNTUA, Анантхапураму, Андхра-Прадеш, Індія
Ключові слова: МГД, нанорідина, рідина Максвелла, термофорез, енергія активації

Анотація

Розроблена числова модель для дослідження поведінки течії моделі нестисливої нанорідини Максвелла на конвективно розтягнутій поверхні з урахуванням ефектів термофорезу та похилого магнітного поля. Система, спочатку сформульована як набір рівнянь у частинних похідних, перетворюється на систему звичайних диференціальних рівнянь за допомогою перетворень подібності. Отримані рівняння розв'язуються за допомогою методу Рунге-Кутта-Фельберга в поєднанні з технікою стрільби. Отримані фізичні параметри похідної системи представлені та обговорені за допомогою графічних зображень. Чисельний процес оцінюється шляхом порівняння результатів з існуючою літературою за різними сценаріями обмеження, що демонструє високий рівень кваліфікації. Основні висновки цього дослідження вказують на те, що поле швидкості зменшується зі збільшенням параметрів рідини, тоді як температура рідини відповідно зменшується. Крім того, швидкість тепловіддачі зменшується зі збільшенням параметрів рідини та термофорезу, але зростає із збільшенням чисел Біо та Прандтля.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

R.S. Rivlin, and J.L. Ericksen, “Stress-deformation relations for isotropic materials,” J. Rational Mech. Anal. 4, 323–425 (1955). https://doi.org/10.1512/iumj.1955.4.54011

T. Hayat, M. Mustafa, S. A. Shehzadand, and S. Obaidat, “Meltingheat transfer in the stagnation-point flow of an upper-convected Maxwell (UCM) fluid past a stretching sheet,” Int. J. Numer. Meth. Fl., 68, 233–243, (2012). https://doi.org/10.1002/fld.2503

K. Sudarmozhi, D. Iranian, and Ilyas Khan, “A steady flow of MHD Maxwell viscoelastic fluid on a flat porous plate with the outcome of radiation and heat generation,” Frontiers in Physics, 11, (2023). https://doi.org/10.3389/fphy.2023.1126662

W. Ibrahim and T. Anbessa, “Mixed convection flow of a Maxwell nanofluid with Hall and ion‐slip impacts employing the spectral relaxation method,” Heat Transfer, 49(5), 3094-3118, (2020). https://doi.org/10.1002/htj.21764

Sehra, H. Sadia, N. Gul, A. Zeb, and Z. A. Khan, “Convection heat–mass transfer of generalized Maxwell fluid with radiation effect, exponential heating, and chemical reaction using fractional Caputo–Fabrizio derivatives,” Open Physics, 20(1), 1250-1266, (2022). https://doi.org/10.1515/phys-2022-0215

N. Khan, F. Ali, M. Arif, Z. Ahmad, A. Aamina, and I. Khan, “Maxwell nanofluid flow over an infinite vertical plate with ramped and isothermal wall temperature and concentration,” Mathematical Problems in Engineering, 2021, 1-19, (2021). https://doi.org/10.1155/2021/3536773

S. Shateyi, and H.Muzara, “A numerical analysis on the unsteady flow of a thermomagnetic reactive Maxwell nanofluid over a stretching/shrinking sheet with ohmic dissipation and Brownian motion,” Fluids, 7(8), 252, (2022). https://doi.org/10.3390/fluids7080252

M. Jawad, A. Saeed, A. Khan, I. Ali, H. Alrabaiah, T. Gul, E. Bonyah, and M. Zubair, “Analytical study of MHD mixed convection flow for Maxwell nanofluid with variable thermal conductivity and Soret and Dufour effects,” AIP Advances, 11(3), (2021). https://doi.org/10.1063/5.0029105

R. Chandra Sekhar Reddy, and P. Sudarsana Reddy, “A comparative analysis of unsteady and steady Buongiorno's Williamson nanoliquid flow over a wedge with slip effects,” Chinese Journal of Chemical Engineering, 28(7), 1767-1777, (2020). https://doi.org/10.1016/j.cjche.2020.04.016

T. Jamir, and H. Konwar, “Effects of Radiation Absorption, Soret and Dufour on Unsteady MHD Mixed Convective Flow past a Vertical Permeable Plate with Slip Condition and Viscous Dissipation,” Journal of Heat and Mass Transfer Research, 9(2), 155-168, (2022). https://doi.org/10.22075/jhmtr.2023.28693.1399

T. Abbas, K. Al-Khaled, A. H. Raza, M. Ayadi, W. Chammam, and S. U. Khan, “Inclined Magnetized Flow of Radioactive Nanoparticles with Exponential Heat Source and Slip Effects: Keller Box Simulations,” Journal of Nanofluids, 12(2), 571-579, (2023). https://doi.org/10.1166/jon.2023.1935

S. Shah, S. M. Atif, and A. Kamran, “Radiation and slip effects on MHD Maxwell nanofluid flow over an inclined surface with chemical reaction,” Heat Transfer, 50(4), 4062-4085, (2021). https://doi.org/10.1002/htj.22064

A. B. Patil, V. S. Patil, P. P. Humane, N. S. Patil, and G. R. Rajput, “Thermally and chemically reacted MHD Maxwell nanofluid flow past an inclined permeable stretching surface,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(3), 838-848, (2022). https://doi.org/10.1177/09544089211050715

B. K. Taid, and N. Ahmed, “MHD free convection flow across an inclined porous plate in the presence of heat source, Soret effect, and chemical reaction affected by viscous dissipation Ohmic heating,” Biointerface Research in Applied Chemistry, 12(5), 6280-6296, (2022). https://doi.org/10.33263/BRIAC125.6280-6296

S. M. Upadhya, R. L. V. Renuka Devi, C. S. K. Raju, and H. M. Ali, “Magnetohydrodynamic nonlinear thermal convection nanofluid flow over a radiated porous rotating disk with internal heating,” Journal of Thermal Analysis and Calorimetry, 143, 1973-1984, (2021). https://doi.org/10.1007/s10973-020-09669-w

M. S. Arif, Y. Nawaz, M. Bibi, and Z. Ali, “Mass Transfer of MHD Nanofluid in Presence of Chemical Reaction on A Permeable Rotating Disk with Convective Boundaries, Using Buongiorno's Model,” CMES-Computer Modeling in Engineering & Sciences, 116(1), (2018). https://doi.org/10.31614/cmes.2018.03834

I. Ali, T. Gul, and A. Khan, “Unsteady Hydromagnetic Flow over an Inclined Rotating Disk through Neural Networking Approach. Mathematics,” 11(8), 1893, (2023). https://doi.org/10.3390/math11081893

M. Huang, J. Huang, Y. Chou, and C. O. Chen, “Effects of Prandtl number on free convection heat transfer from a vertical plate to a non-Newtonian fluid. Journal of Heat Transfer (Transcations of the ASME (American Society of Mechanical Engineers), Series C);(United States),” 111(1), (1989). https://doi.org/10.1115/1.3250645

A. Rahbari, M. Abbasi, I. Rahimipetroudi, B. Sundén, D. DomiriGanji, and M. Gholami, “Heat transfer and MHD flow of non-newtonian Maxwell fluid through a parallel plate channel: analytical and numerical solution,” Mechanical Sciences, 9(1), 61-70, (2018). https://doi.org/10.5194/ms-9-61-2018

S. Khan, M. M. Selim, A. Khan, , A. Ullah, T. Abdeljawad, Ikramullah, M. Ayaz, and W. K. Mashwani, “On the analysis of the non-Newtonian fluid flow past a stretching/shrinking permeable surface with heat and mass transfer,” Coatings, 11(5), 566, (2021). https://doi.org/10.3390/coatings11050566

T. Liu, L. Lin, and L. Zheng, “Unsteady flow and heat transfer of Maxwell nanofluid in a finite thin film with internal heat generation and thermophoresis,” Thermal Science, 22(6 Part B), 2803-2813, (2018). https://doi.org/10.2298/TSCI170129097L

S. Arulmozhi, K. Sukkiramathi, S. S. Santra, R. Edwan, U. Fernandez-Gamiz, and S. Noeiaghdam, “Heat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate,” Results in Engineering 14, 100394, (2022). https://doi.org/10.1016/j.rineng.2022.100394

N. Vijay, and K. Sharma, “Dynamics of stagnation point flow of Maxwell nanofluid with combined heat and mass transfer effects: A numerical investigation,” International Communications in Heat and Mass Transfer 141, 106545, (2023). https://doi.org/10.1016/j.icheatmasstransfer.2022.106545

T. Zhang, S. U. Khan, M. Imaran, I. Tlili, H. Waqas, N. Ali, “Activation energy and thermal radiation aspects in bioconvection flow of rate-type nanoparticles configured by a stretching/shrinking disk,” Journal of Energy Resources Technology, 142(11), 112102, (2020). https://doi.org/10.1115/1.4047249

M. M. Bhatti, A. Shahid, T. Abbas, S. Z. Alamri, and R. Ellahi, “Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate,” Processes, 8(3), 328, (2020). https://doi.org/10.3390/pr8030328

K. Gangadhar, D. Vijayakumar, and K. Thangavelu, “Nonlinear radiation on Maxwell fluid in a convective heat transfer with viscous dissipation and activation energy,” Heat Transfer, 50(7), 7363-7379, (2021). https://doi.org/10.1002/htj.22233

H. Dessie, “Effects of Chemical Reaction, Activation Energy and Thermal Energy on Magnetohydrodynamics Maxwell Fluid Flow in Rotating Frame,” Journal of Nanofluids, 10(1), 67-74, (2021). https://doi.org/10.1166/jon.2021.1767

S. K. Saini, R. Agrawal, and P. Kaswan, “Activation energy and convective heat transfer effects on the radiative Williamson nanofluid flow over a radially stretching surface containing Joule heating and viscous dissipation,” Numerical Heat Transfer, Part A: Applications, 1-24, (2023). https://doi.org/10.1080/10407782.2023.2226815

V. Ramachandra Reddy, G. Sreedhar, and K. Raghunath, “Effects of Hall Current, Activation Energy and Diffusion Thermo of MHD Darcy-Forchheimer Casson Nanofluid Flow in the Presence of Brownian Motion and Thermophoresis,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 105(2), 129-145, (2023). https://doi.org/10.37934/arfmts.105.2.129145

M. Ali, M. Shahzad, F. Sultan, W. A. Khan, and S. Z. H. Shah, “Characteristic of heat transfer in flow of Cross nanofluid during melting process,” Applied Nanoscience, 10, 5201-5210, (2020). https://doi.org/10.1007/s13204-020-01532-6

L. Xu, and E. W. M. Lee, “Variational iteration method for the magnetohydrodynamic flow over a nonlinear stretching sheet,” Abstract and Applied Analysis, Hindawi, 2013, 1085-3375, 2013. https://doi.org/10.1155/2013/573782

Опубліковано
2023-12-02
Цитовано
Як цитувати
Бабу, Д. Д., Венкатесварлу, С., & Редді, Е. К. (2023). Чисельне дослідження ефектів термофорезу та енергії активації нанорідини Максвелла над нахиленим магнітним полем, прикладеним до диска. Східно-європейський фізичний журнал, (4), 326-335. https://doi.org/10.26565/2312-4334-2023-4-43