Прогноз в'язкості нанорідин на основі кобальтового фериту/SAE50 та моторної оливи за допомогою навченої штучної нейтральної мережі (ANN) та методології відгуку поверхні (RSM)
Анотація
Передача тепла звичайними рідинами, такими як чиста вода, масло та етиленгліколь, є неефективною через їх низьку в'язкість. Щоб підвищити ефективність звичайних рідин, дуже малий відсоток наночастинок додається до базових рідин для приготування нанорідини. Вплив зміни в'язкості можна використовувати для дослідження реологічних властивостей нанофлюїдів. У цьому дослідженні нанорідини на основі (CoFe2O4)/моторна олива були виготовлені за стандартною методологією у два етапи. На першому етапі CoFe2O4 (CF) синтезували за допомогою золь-гель вологого хімічного процесу. Кристалічна структура та морфологія були підтверджені за допомогою рентгенівського дифракційного аналізу (XRD) та скануючої електронної мікроскопії (SEM), відповідно. На другому етапі стандартна процедура була адаптована, взявши кілька твердих об’ємних часток CF як Ø = 0, 0,25, 0,50, 0,75 і 1,0 %. Такі відсотки концентрацій диспергували у відповідному об’ємі моторного масла за допомогою ультразвукової обробки протягом 5 годин. Після цього в'язкість підготовлених п'яти різних нанофлюїдів визначали при температурах від 40 до 80 °C. Відповідно до отриманих даних, в’язкість нанофлюїдів (µnf) зменшувалася в міру підвищення температури, але збільшувалася, коли об’ємний відсоток нанофлюїдів Ø підвищувався. Крім того, було враховано 25 експериментальних спостережень для прогнозування в’язкості за допомогою штучної нейронної мережі (ANN) і методології відгуку поверхні (RSM). Алгоритм побудови ідеальної архітектури штучної нейронної мережі був рекомендований для прогнозування швидкості рідини нанофлюїду на основі нафти CF/SAE-50 за допомогою програмного забезпечення MATLAB. Щоб визначити правильність прогнозованої моделі, було розраховано середню квадратичну помилку (MSE) 0,0136.
Завантаження
Посилання
Kasaeian, A., et al., A review on the applications of nanofluids in solar energy systems. 2015. 43: p. 584-598.
Nkurikiyimfura, I., et al., Heat transfer enhancement by magnetic nanofluids—a review. 2013. 21: p. 548-561.
A[1] A. Kasaeian, A.T. Eshghi, and M. Sameti, "A review on the applications of nanofluids in solar energy systems," Renewable and Sustainable Energy Reviews, 43, 584 598 (2015). https://doi.org/10.1016/j.rser.2014.11.020
I. Nkurikiyimfura, Y. Wang, and Z. Pan, "Heat transfer enhancement by magnetic nanofluids - a review," Renewable and Sustainable Energy Reviews, 21, 548-561 (2013). https://doi.org/10.1016/j.rser.2012.12.039
S. Angayarkanni, and J. Philip, "Review on thermal properties of nanofluids: Recent developments," Advances in Colloid and Interface Science, 225: 146 176. 2015. https://doi.org/10.1016/j.cis.2015.08.014
M. Raja, R. Vijayan, P. Dineshkumar, and M. Venkatesan, "Review on nanofluids characterization, heat transfer characteristics and applications," Renewable and Sustainable Energy Reviews, 64, 163-173 (2016). https://doi.org/10.1016/j.rser.2016.05.079
S.K. Das, S.U. Choi, and H.E. Patel, "Heat transfer in nanofluids—a review," Heat transfer engineering, 27(10), 3-19 (2006). https://doi.org/10.1080/01457630600904593
T. Maré, S. Halelfadl, S. Van Vaerenbergh, and P. Estellé, "Unexpected sharp peak in thermal conductivity of carbon nanotubes water-based nanofluids," International Communications in Heat and Mass Transfer, 66, 80-83 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2015.05.013
Y.L. Zhai, G.D. Xia, X.F. Liu, and Y.F. Li, "Heat transfer enhancement of Al2O3-H2O nanofluids flowing through a micro heat sink with complex structure," 66, 158-166 (2015). http://dx.doi.org/10.1016%2Fj.icheatmasstransfer.2015.05.025
M.A. Sheremet, I. Pop, and M.M. Rahman, "Three-dimensional natural convection in a porous enclosure filled with a nanofluid using Buongiorno’s mathematical model," International Journal of Heat and Mass Transfer, 82, 396-405 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.066
Jang, S.P. and S.U.S. Choi, "Role of Brownian motion in the enhanced thermal conductivity of nanofluids," Appl. Phys. Lett. 84(21), 4316 4318. (2004). https://doi.org/10.1063/1.1756684
S.K. Das, and S.U.S. Choi, "A review of heat transfer in nanofluids," Advances in Heat transfer, 41, 81-197 (2009). https://doi.org/10.1016/S0065-2717(08)41002-X
D.S. Udawattha, M. Narayana, and U.P.L. Wijayarathne, "Predicting the effective viscosity of nanofluids based on the rheology of suspensions of solid particles," 31(3), 412-426 (2019). https://doi.org/10.1016/j.jksus.2017.09.016
Y. Yang, Z.G.Z., E.A. Grulke, W.B. Anderson, and G. Wu, "Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow," 48(6), 1107-1116 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038
M. Gupta, R. Kumar, N. Arora, S. Kumar, and N. Dilbagi, "Forced convective heat transfer of MWCNT/water nanofluid under constant heat flux: an experimental investigation," Arabian Journal for Science and Engineering, 41(2), 599-609 (2016). https://doi.org/10.1007/s13369-015-1699-5
W.-Q. Lu, and and Q.-M. Fan, "Study for the particle's scale effect on some thermophysical properties of nanofluids by a simplified molecular dynamics method," 32(4), 282-289 (2008). https://doi.org/10.1016/j.enganabound.2007.10.006
K.V. Wong, and O. De Leon, "Applications of nanofluids: current and future," Advances in mechanical engineering, 2, 519659 (2010). https://doi.org/10.1155/2010/519659
A. Patra, M.K. Nayak, and A. Misra, "Viscosity of nanofluids-A Review," International Journal of Thermofluid Science and Technology, 7(2), 070202 (2020). https://doi.org/10.36963/IJTST.2020070202
M.J. Pastoriza-Gallego, C. Casanova, J.L. Legido, and M.M. Piñeiro, "CuO in water nanofluid: influence of particle size and polydispersity on volumetric behaviour and viscosity," 300(1-2), 188-196 (2011). https://doi.org/10.1016/j.fluid.2010.10.015
T.X. Phuoc, M. Massoudi, and R.-H. Chen, "Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan," International Journal of Thermal Sciences, 50(1), 12-18 (2011). https://doi.org/10.1016/j.ijthermalsci.2010.09.008
P.K. Namburu, D.K. Das, K.M. Tanguturi, and R.S. Vajjha, "Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties,' 48(2), 290-302 (2009). https://doi.org/10.1016/j.ijthermalsci.2008.01.001
J. Li, C. Zhou, G. Wang, and D. Zhao, "Study on rheological behavior of polypropylene/clay nanocomposites," Journal of applied polymer science, 89(13), 3609-3617 (2003). https://doi.org/10.1002/app.12643
M. Gupta, V. Singh, R. Kumar, and Z. Said, "A review on thermophysical properties of nanofluids and heat transfer applications," Renewable and Sustainable Energy Reviews, 74, 638-670 (2017). https://doi.org/10.1016/j.rser.2017.02.073
R. Saidur, K. Leong, and H.A. Mohammed, "A review on applications and challenges of nanofluids," Renewable and sustainable energy reviews, 15(3), 1646-1668 (2011). https://doi.org/10.1016/j.rser.2010.11.035
H. Karimi, F. Yousefi, and M.R. Rahimi, "Correlation of viscosity in nanofluids using genetic algorithm-neural network (GA-NN)," Heat and mass transfer, 47(11), 1417-1425 (2011). http://dx.doi.org/10.1007%2Fs00231-011-0802-z
M. Gholizadeh, M. Jamei, I. Ahmadianfar, and R. Pourrajab, "Prediction of nanofluids viscosity using random forest (RF) approach," Chemometrics and Intelligent Laboratory Systems, 201, 104010 (2020). https://doi.org/10.1016/j.chemolab.2020.104010
P.K. Kanti, K.V. Sharma, K.M. Yashawantha, and S. Dmk, "Experimental determination for viscosity of fly ash nanofluid and fly ash-Cu hybrid nanofluid: Prediction and optimization using artificial intelligent techniques," Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-20 (2021). https://doi.org/10.1080/15567036.2021.1877374
A.A.A.A. Alrashed, M.S. Gharibdousti, M. Goodarzi, L.R. de Oliveira, M.R. Safaei, and E.P.B. Filho, "Effects on thermophysical properties of carbon based nanofluids: experimental data, modelling using regression, ANFIS and ANN," International Journal of Heat and Mass Transfer, 125, 920-932 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.142
M.H. Ahmadi, B. Mohseni-Gharyehsafa, M. Farzaneh-Gord, R.D. Jilte, and R. Kumar, "Applicability of connectionist methods to predict dynamic viscosity of silver/water nanofluid by using ANN-MLP, MARS and MPR algorithms," Engineering Applications of Computational Fluid Mechanics, 13(1), 220-228 (2019). https://doi.org/10.1080/19942060.2019.1571442
M.H. Esfe, S. Saedodin, M. Bahiraei, D. Toghraie, O. Mahian, and S. Wongwises, "Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network," Journal of Thermal Analysis and Calorimetry, 118(1), 287-294 (2014). https://doi.org/10.1007/s10973-014-4002-1
N. Zhao, and Z. Li, "Experiment and artificial neural network prediction of thermal conductivity and viscosity for alumina-water nanofluids," Materials, 10(5), 552 (2017). https://doi.org/10.3390/ma10050552
M. Vakili, S. Khosrojerdi, P. Aghajannezhad, and M. Yahyaei, "A hybrid artificial neural network-genetic algorithm modeling approach for viscosity estimation of graphene nanoplatelets nanofluid using experimental data," International Communications in Heat and Mass Transfer, 82, 40-48 (2017). https://doi.org/10.1016/j.icheatmasstransfer.2017.02.003
M. Vakili, M. Karami, S. Delfani, and S. Khosrojerdi, "Experimental investigation and modeling of thermal radiative properties of f-CNTs nanofluid by artificial neural network with Levenberg–Marquardt algorithm," International Communications in Heat and Mass Transfer, 78, 224-230 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.09.011
A.M Ghanadi, A.H. Nasab, D. Bastani, and A.A.S. Kordi, "The effect of nanoparticles on the mass transfer in liquid–liquid extraction," Chemical Engineering Communications, 202(5), 600-605 (2015). https://doi.org/10.1080/00986445.2013.858037
M. Abdollahi-Moghaddam, K. Motahari, and A. Rezaei, "Performance characteristics of low concentrations of CuO/water nanofluids flowing through horizontal tube for energy efficiency purposes; an experimental study and ANN modeling," Journal of Molecular Liquids, 271, 342-352 (2018). https://doi.org/10.1016/j.molliq.2018.08.149
M.H. Esfe, and S.M.S. Tilebon, "Statistical and artificial based optimization on thermo-physical properties of an oil-based hybrid nanofluid using NSGA-II and RSM," Physica A: Statistical Mechanics and its Applications, 537, 122126 (2020). https://doi.org/10.1016/j.physa.2019.122126
M.H. Esfe, M. Goodarzi, and S. Esfandeh, "Experimental investigation of c(75–25%)/10W40 as a new nano-lubricant," The European Physical Journal Plus, 136(5), 605 (2021). https://doi.org/10.1140/epjp/s13360-021-01414-y
M.H. Esfe, and M.H. Hajmohammad, "Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40: 60) aqueous nanofluid using NSGA-II coupled with RSM," Journal of Molecular Liquids, 238, 545-552 (2017). https://doi.org/10.1016/j.molliq.2017.04.056
M.H. Esfe, and S. Alidoust, "Modeling and precise prediction of thermophysical attributes of water/EG blend-based CNT nanofluids by NSGA-II using ANN and RSM," Arabian Journal for Science and Engineering, 46(7), 6423-6437 (2021).
Maqsood, K., et al., Multi-objective optimization of thermophysical properties of multiwalled carbon nanotubes based nanofluids. Chemosphere, 286, 131690 (2022). https://doi.org/10.1007/s13369-020-05086-1
M.H. Esfe, M.H. Kamyab, "Mathematical monitoring of agglomeration effects on thermophysical properties of water-based nanofluids using MLP and RSM," Journal of Thermal Analysis and Calorimetry, 146(2), 739-756 (2021). https://doi.org/10.1007/s10973-020-09996-y
N. Zhao, and Z. Li, "Modeling and prediction of viscosity of water-based nanofluids by radial basis function neural networks," 281, 173-183 (2015). https://doi.org/10.3390/app7040409
O.A. Alawi, N.A.C. Sidik, H.W. Xian, T.H. Kean, and S.N. Kazi, "Thermal conductivity and viscosity models of metallic oxides nanofluids," 116, 1314-1325 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.133
D.-H. Chen, and X.-R. He, "Synthesis of nickel ferrite nanoparticles by sol-gel method," Materials Research Bulletin, 36(7-8), 1369-1377 (2001). https://doi.org/10.1016/S0025-5408(01)00620-1
M. Salavati-Niasari, F.Davar, M. Mazaheri, and M. Shaterian, "Preparation of cobalt nanoparticles from [bis (salicylidene) cobalt (II)]–oleylamine complex by thermal decomposition," Journal of Magnetism and Magnetic Materials, 320(3-4), 575-578 (2008). https://doi.org/10.1016/j.jmmm.2007.07.020
M. Scimeca, S. Bischetti, H.K. Lamsira, R. Bonfiglio, and E. Bonanno, "Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis," European journal of histochemistry, 62(1), (2018). https://doi.org/10.4081/ejh.2018.2841
W. Zhou, R. Apkarian, Z.L. Wang, and D. Joy, "Fundamentals of scanning electron microscopy (SEM)," in: Scanning microscopy for nanotechnology, edited by D. Joy, and Z.L. Wang, (Springer, NY, 2006), pp. 1-40.
Авторське право (c) 2023 Малік Мухаммад Хафізуллах, Абдул Рафай, Гулам Мустафа, Мухаммад Халід, Зубайр Ахмед Калхоро, Абдул Васім Шайх, Ахмед Алі Раджпут
Цю роботу ліцензовано за Міжнародня ліцензія Creative Commons Attribution 4.0.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).