Вплив протона і нейтрона як зонда для реакції ядерного синтезу при навколобар'єрних енергіях

  • M. A. Khuadher Факультет фізики, Освітній коледж чистих наук, Вавилонський університет, Ірак https://orcid.org/0009-0006-5372-547X
  • Ф.А. Маджид Факультет фізики, Освітній коледж чистих наук, Вавилонський університет, Ірак https://orcid.org/0000-0002-0701-9084
Ключові слова: канал розпаду, пружний канал, ядерний синтез, перенесення нейтронів, перенесення протонів

Анотація

У цьому дослідженні квантово-механічні розрахунки та напівкласичний підхід використовувалися для визначення ймовірності термоядерного синтезу (Pfus), розподілу бар’єрів термоядерного синтезу (Dfus) і поперечного перерізу синтезу (σfus) для систем 28Si + 90Zr, 28Si + 92Zr, 28Si + 94Zr, 41K + 28Si, and 45K + 28Si. Напівкласичний підхід передбачав використання наближення Венцеля–Крамерса–Бріллюена (WKB) для опису відносного руху між снарядом і цільовими ядрами та методу дискретизованого пов’язаного каналу (CDCC) Альдера-Вінтера (AW) для опису власний рух ядер. Результати показали, що врахування розрахунків каналу зв’язку для квантової механіки та напівкласичного підходу та його впливу на Pfus, Dfus та σfus для досліджуваних систем, що включають реакції переносу одного нейтрона або одного протона, є дуже важливим для розгляду зокрема навколо та під кулонівським бар’єром. Результати порівнювали з даними вимірювань і виявили розумну збіг.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

M. Beckerman, "Sub-barrier fusion of two nuclei," Reports on Progress in Physics, 51(8), 1047 (1988). https://doi.org/10.1088/0034-4885/51/8/001

J.E. Johnstone, V. Singh, R. Giri, S. Hudan, J. Vadas, R.T. Desouza, D. Ackermann, A. Chbihi, Q. Hourdille, A. Abbott, and C. Balhoff, "Proton and neutron exchange as a prelude to fusion at near-barrier energies," Physical Review C, 106(1), no. 1, p. L011603, 2022. https://doi.org/10.1103/PhysRevC.106.L011603

K. Hammerton, Z. Kohley, D.J. Hinde, M. Dasgupta, A. Wakhle, E. Williams, V.E. Oberacker, A.S. Umar, I.P. Carter, K.J. Cook, and J. Greene, "Reduced quasifission competition in fusion reactions forming neutron-rich heavy elements," Physical Review C, vol. 91, no. 4, p. 041602, 2015. https://doi.org/10.1103/PhysRevC.91.041602

S. Hudan, R.T. deSouza, A.S. Umar, Z. Lin, and C.J. Horowitz, "Enhanced dynamics in fusion of neutron-rich oxygen nuclei atbove- energies," Physical Review C, vol.101, no.6,p. 061601, 2020. https://doi.org/10.1103/PhysRevC.101.061601

H.M. Jia, C.J. Lin, L. Yang, X.X. Xu, N.R. Ma, L.J. Sun, F. Yang, Z.D. Wu, H.Q. Zhang, Z.H. Liu, and D.X. Wang, "A self-consistent method to analyze the effects of the positive Q-value neutron transfers on fusion," Physics Letters B 755, 43-46 (2016). https://doi.org/10.1016/j.physletb.2016.01.058

M. Beckerman, M. Salomaa, A. Sperduto, H. Enge, J. Ball, A. DiRienzo, S. Gazes, Y. Chen, J.D. Molitoris, and M. Nai-Feng, "Dynamic influence of valence neutrons upon the complete fusion of massive nuclei," Physical Review Letters, vol. 45, no. 18, pp. 1472, 1980. https://doi.org/10.1103/PhysRevLett.45.1472

R.A. Broglia, C.H. Dasso, S. Landowne, and A. Winther, "Possible effect of transfer reactions on heavy ion fusion at sub-barrier energies," Physical Review C, vol. 27, no. 5, pp. 2433, 1983. https://doi.org/10.1103/PhysRevC.27.2433

S. Kalkal, S. Mandal, N. Madhavan, E. Prasad, S. Verma, A. Jhingan, R. Sandal, S. Nath, J. Gehlot, B.R. Behera, and M. Saxena, "Channel coupling effects on the fusion excitation functions for Si28+ Zr90,94 in sub-and near-barrier regions," Physical Review C, vol. 81, no. 4, p. 044610, 2010. https://doi.org/10.1103/PhysRevC.81.044610

A.M. Stefanini, L. Corradi, A.M. Vinodkumar, Y. Feng, F. Scarlassara, G. Montagnoli, S. Beghini, and M. Bisogno, "Near-barrier fusion of 36S+90,96Zr: The effect of the strong octupole vibration of 96Zr," Physical Review C, vol. 62, no. 1, p. 014601, 2000. https://doi.org/10.1103/PhysRevC.62.014601

V.Y. Denisov, "Subbarrier heavy ion fusion enhanced by nucleon transfer," The European Physical Journal A-Hadrons and Nuclei, vol. 7, pp. 87-99, 2000. https://doi.org/10.1007/s100500050015

Walter Kohn and Lu Jeu Sham, "Self-consistent equations including exchange and correlation effects," Physical Review 140, A1133 (1965) . https://doi.org/10.1103/PhysRev.140.A1133

V. Singh, J. Vadas, T. K. Steinbach, B. B. Wiggins, S. Hudan, R. T. deSouza, Z. Lin, C. J. Horowitz, L. T. Baby, S. A. Kuvin, and V. Tripathi, "Fusion enhancement at near and sub-barrier energies in 19O+12C," Phys. Lett. B 765, 99 (2017). https://doi.org/10.1016/j.physletb.2016.12.017

B. A. Bian, F. S. Zhang, and H. Y. Zhou, "Fusion enhancement in the reactions of neutron-rich nuclei," Nucl. Phys. A 829, 1 (2009). https://doi.org/10.1016/j.nuclphysa.2009.08.003

C. Beck, "Transfer/Breakup Channel Couplings in Sub-barrier Fusion Reactions," J. Phys. Conf. Ser. 420, 012067 (2013). 10.1088/1742-6596/420/1/012067

N. Rowley, I. J. Thompson, and M. A. Nagarajan, "Neutron flow and necking in heavy-ion fusion reactions," Phys. Lett. B 282, 276 (1992). https://doi.org/10.1016/0370-2693(92)90638-K

R. Pengo, D. Evers, K. E. G. Löbner, U. Quade, K. Rudolph, S. J. Skorka, and I. Weidl, "Nuclear structure effects in sub-barrier fusion cross sections," Nucl. Phys. A 411, 255 (1983). https://doi.org/10.1016/0375-9474(83)90392-5

H. Timmers, D. Ackermann, S. Beghini, L. Corradi, J. H. He, G. Montagnoli, F. Scarlassara, A. M. Stefanini, and N. Rowley, "A case study of collectivity, transfer and fusion enhancement," Nucl. Phys. A 633, 421 (1998). https://doi.org/10.1016/S0375-9474(98)00121-3

V.I. Zagrebaev, "Sub-barrier fusion enhancement due to neutron transfer," Phys. Rev. C 67, 061601(R) (2003). https://doi.org/10.1103/PhysRevC.67.061601

M. S. Gautam, S. Duhan, R.P. Chahal, H. Khatri, S. B. Kuhar, and K. Vinod, "Influence of neutron transfer channels and collective excitations in the fusion of Si28 with Zr90,92,94,96 targets," Phys. Rev. C 102, 014614 (2020). https://doi.org/10.1103/PhysRevC.102.014614

G. L. Zhang, X. X. Liu, and C. J. Lin, "Systematic analysis of the effect of a positive Q-value neutron transfer in fusion reactions," Phys. Rev. C 89, 054602 (2014). https://doi.org/10.1103/PhysRevC.89.054602

F. A. Majeed, Y. A. Abdul-Hussien, and F. M. Hussian, “Fusion Reaction of Weakly Bound Nuclei,” Nuclear Fusion- One Noble Goal and a Variety of Scientific and Technological Challenges (2019). https://doi.org/10.5772/intechopen.80582

F. K. Ahmed, F. A. Majeed, and T. M. Abbass, “The Effect of Breakup on the Total Fusion Reaction Cross Section of Stable Bound Nuclei,” University of Babylon (2013). https://repository.uobabylon.edu.iq/papers/publication.aspx?Pubid=5446

F. A. Majeed and Y. A. Abdul-Hussien, “ Fusion and Breakup Reactions of 17S+208Pb and 15C+232ThHalo Nuclei Systems,” J. Adv. Phys. 11, 2 (2015).https://rajpub.com/index.php/jap/article/view/495jap

F. A. Majeed and Y. A. Abdul-Hussien, “Semiclassical treatment of fusion and breakup processes of 6, 8He halo nuclei,” J. Theor. Appl. Phys. 10, 2, 107-112 (2016). https://doi.org/10.1007/s40094-016-0207-y

L. F. Canto, R. Donangelo, and H. D. Marta, “Semiclassical treatment of fusion processes in collisions of weakly bound nuclei,” Phys. Rev. C 73, 034608 (2006). https://doi.org/10.1103/PhysRevC.73.034608

K. Alder and A. Winther, Electromagnetic Excitations North (1975).

P. R. S. Gomes et al., “Effect of the breakup on the fusion and elastic scattering of weakly bound projectiles on Zn 64,” Phys. Rev. C 71, 034608 (2005). https://doi.org/10.1103/PhysRevC.71.034608

L. F. Canto et al., “Recent developments in fusion and direct reactions with weakly bound nuclei,” Phys. Rep. 596, 1-86 (2015). https://doi.org/10.1016/j.physrep.2015.08.001

C. A. Bertulani and L. F. Canto, “Semiclassical calculation of Coulomb break-up of weakly-bound nuclei,” Nucl. Phys. A 539, 163-176 (1992). https://doi.org/10.1016/0375-9474(92)90240-K

P. Gomes, T. Penna, R.L. Neto, J. Acquadro, C. Tenreiro, P. Freitas, E. Crema, NC Filho, and M. Coimbra, "Nucl. Instr. and Meth. A," vol. 280, p. 395 (1989). https://doi.org/10.1016/0168-9002(89)90940-6

M.S. Hussein, M.P. Pato, L.F. Canto, and R. Donangelo, "Real part of the polarization potential for induced 11 fusion reactions," Physical Review C, vol. 47, no. 5, pp. 2398-2402 (1993). https://doi.org/10.1103/PhysRevC.47.2398

J.F. Liang and C. Signorini, "Fusion induced by radioactive ion beams," International Journal of Modern Physics E, vol. 14, no. 8, pp. 1121-1150 (2005). https://doi.org/10.1142/S021830130500382X

K. Alder and A. Winther, "Electromagnetic Excitations" (North-Holland, Amsterdam, 1975).

M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions," Dover Publications, New York (1964), p. 921.

P.R.S. Gomes, J. Lubian, I. Padron, R.M. Anjos, D.R. Otomar, L.C. Chamon, and E. Crema, "Fusion, break-up and scattering bound nuclei," Revista mexicana de física, vol. 52, pp. 23-29 (2006). https://www.scielo.org.mx/scielo.php?pid=S0035-001X2006001000006&script=sci_abstract&tlng=pt

L.F. Canto, R. Donangelo, and H.D. Marta, "Upper bounds for fusion processes in collisions of weakly bound nuclei," Brazilian Journal of Physics, vol. 35, pp. 884-887 (2005). https://doi.org/10.1590/S0103-97332005000500045

M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions," National Bureau of Standards, Applied Mathematics Series, vol. 55 (1972).

N. Rowley, G.R. Satchler, and P.H. Stelson, "On the ‘distribution of barriers’ interpretation of heavy-ion fusion," Physics Letters B, vol. 254, no. 1-2, pp. 25-29 (1991). https://doi.org/10.1016/0370-2693(91)90389-8

Nunes, F.M. and Thompson, I.J. (1999). Multistep effects in sub-Coulomb breakup. Physical Review C, 59(5), 2652. https://doi.org/10.1103/PhysRevC.59.2652

L.F. Canto, R. Donangelo, and H.D. Marta, "Semiclassical treatment of fusion processes in collisions of weakly bound nuclei," Physical Review C 73, 034608 (2006). https://doi.org/10.1103/physrevc.73.034608

S. Kalkal, S. Mandal, N. Madhavan, E. Prasad, S. Verma, A. Jhingan, R. Sandal, S. Nath, J. Gehlot, B.R. Behera, and M. Saxena, "Channel coupling effects on the fusion excitation functions for Si28+Zr90,94 in sub- and near-barrier regions," Physical Review C, vol. 81, no. 4, p. 044610 (2010). https://doi.org/10.1103/PhysRevC.81.044610

J.O. Newton, C.R. Morton, M. Dasgupta, J.R. Leigh, J.C. Mein, D.J. Hinde, H. Timmers, and K. Hagino, "Experimental barrier distributions for the fusion of 12C, 16O, 28Si, and 35Cl with 92Zr and coupled-channels analyses," Physical Review C, vol. 64, no. 6, p. 064608 (2001). https://doi.org/10.1103/PhysRevC.64.064608

J.E. Johnstone, "The influence of shell structure on near-barrier fusion of neutron-rich nuclei" (PhD thesis, Indiana University, 2022).

Опубліковано
2023-09-04
Цитовано
Як цитувати
Khuadher, M. A., & Маджид, Ф. (2023). Вплив протона і нейтрона як зонда для реакції ядерного синтезу при навколобар’єрних енергіях. Східно-європейський фізичний журнал, (3), 178-186. https://doi.org/10.26565/2312-4334-2023-3-14