Енергетичні умови та діагностика визначника стану космологічної моделі зі спеціальним законом параметрів Хаббла в f(R,T) гравітації

  • В.Р. Патіл Департамент коледжа математики, мистецтв, науки та торгівлі, Чикхалдара, Амраваті, Індія https://orcid.org/0000-0002-0442-3962
  • П.А. Болке Кафедра математики, коледж інженерії та управління професора Рама Меге, Амраваті, Індія https://orcid.org/0000-0002-1212-5260
  • С.К. Вагмаре Департамент математики, TGPCET Нагпур, Індія
  • Дж.Л. Павде Дадасахеб Гавай Відьялая, Малхара, Ачалпур, Амраваті, Індія https://orcid.org/0000-0001-8068-6265
Ключові слова: f(R, T) гравітація, параметри вимірювача стану, космологічна модель Б’янкі типу-I, параметр уповільнення

Анотація

У цій статті ми розглядаємо космологічну модель LRS Bianchi типу I в рамках f(R, T) гравітації, де R є скаляр Річчі, а T є тензор імпульсу енергії напруги за наявності доменної стінки. ми використали спеціальний закон зміни параметра Хаббла, запропонований Берманом (1983), щоб отримати точний розв’язок рівняння поля, що відповідає моделі Всесвіту. Були отримані енергетичні умови та фізична поведінка Всесвіту, а їх еволюція обговорювалася за допомогою деяких фізичних параметрів і за допомогою їхніх графіків. Крім того, ми можемо використовувати параметр визначника стану для перевірки валідності моделі.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

A.H. Guth, and D.I. Kaiser, “Inflationary cosmology: Exploring the universe from the smallest to the largest scales,” Science, 307(5711), 884-890 (2005). https://doi.org/10.1126/science.1107483

A.H. Guth, “Inflation and the new era of high precision cosmology,” MIT Physics Annual, 28-39 (2002).

P.A. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A.J. Banday et al., “Planck 2015 results-xiii. cosmological parameters. Astronomy and Astrophysics,” 594, A13. (2016). https://doi.org/10.1051/0004-6361/201525830

S. Alam, M. Ata, S. Bailey, F. Beutler, D. Bizyaev, J.A. Blazek, A.S. Bolton, et al., “The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,” Monthly Notices of the Royal Astronomical Society, 470(3), 2617-2652 (2017). https://doi.org/10.1093/mnras/stx721

S. Naess, M. Hasselfield, J. McMahon, M.D. Niemack, G.E. Addison, P.A. Ade, R. Allison, et al., “The Atacama cosmology telescope: CMB polarization at 200<ℓ<9000,” Journal of Cosmology and Astroparticle Physics, 2014(10), 007 (2014). https://doi.org/10.1088/1475-7516/2014/10/007

A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, Ron L. Gilliland, et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” The astronomical journal, 116(3), 1009 (1998). https://doi.org/10.1086/300499

S. Perlmutter, G. Aldering, M.D. Valle, S. Deustua, R.S. Ellis, S. Fabbro, A. Fruchter, et al., “Discovery of a supernova explosion at half the age of the Universe,” Nature, 391(6662), 51-54. (1998). https://doi.org/10.1038/34124

S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, et al., “Measurements of Ω and Λ from 42 high-redshift supernovae,” The Astrophysical Journal, 517(2), 565 (1999). https://doi.org/10.1086/307221

D.N. Spergel, L. Verde, H.V. Peiris, E. Komatsu, M.R. Nolta, C.L. Bennett, M. Halpern, et al., “First-year Wilkinson Microwave Anisotropy Probe (WMAP)*observations: determination of cosmological parameters,” The Astrophysical Journal Supplement Series, 148(1), 175 (2003). https://doi.org/10.1086/377226

D.N. Spergel, R. Bean, O. Doré, M.R. Nolta, C.L. Bennett, J. Dunkley, G. Hinshaw, et al., “Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for cosmology,” The Astrophysical Journal Supplement Series, 170(2), 377 (2007). https://doi.org/10.1086/513700

M. Tegmark, M.A. Strauss, M.R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, X. Wang, et al., “Cosmological parameters from SDSS and WMAP,” Physical review D, 69(10), 103501 (2004). https://doi.org/10.1103/PhysRevD.69.103501

S.F. Daniel, R.R. Caldwell, A. Cooray, and A. Melchiorri, “Large scale Structure as a probe of gravitational slip,” Physical Review D, 77(10), 103513 (2008). https://doi.org/10.1103/PhysRevD.77.103513

Z.Y. Huang, B. Wang, E. Abdalla, and R.K. Su, “Holographic explanation of wide-angle power correlation suppression in the cosmic microwave background radiation,” Journal of Cosmology and Astroparticle Physics, 2006(05), 013 (2006). https://doi.org/10.1088/1475-7516/2006/05/013

S.M. Carroll, “Quintessence and the rest of the world: suppressing long-range interactions,” Physical Review Letters, 81(15), 3067 (1998). https://doi.org/10.1103/PhysRevLett.81.3067

M.S. Turner, “Making sense of the new cosmology,” International Journal of Modern Physics A, 17(supp01), 180-196 (2002). https://doi.org/10.1142/S0217751X02013113

R.R. Caldwell, “A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state,” Physics Letters B, 545(1-2), 23-29 (2002). https://doi.org/10.1016/S0370-2693(02)02589-3

T. Chiba, T. Okabe, and M. Yamaguchi, “Kinetically driven quintessence,” Physical Review D, 62(2), 023511 (2000). https://doi.org/10.1103/PhysRevD.62.023511

T. Padmanabhan, “Accelerated expansion of the universe driven by tachyonic matter,” Physical Review D, 66(2), 021301 (2002). https://doi.org/10.1103/PhysRevD.66.021301

M. Li, “A model of holographic dark energy,” Physics Letters B, 603(1-2), 1-5 (2004). https://doi.org/10.1016/j.physletb.2004.10.014

A. Kamenshchik, U. Moschella, and V. Pasquier, “An alternative to quintessence,” Physics Letters B, 511(2-4), 265-268. (2001). https://doi.org/10.1016/S0370-2693(01)00571-8

A.D. Dolgov, and M. Kawasaki, “Can modified gravity explain accelerated cosmic expansion?” Physics Letters B, 573, 1-4 (2003). https://doi.org/10.1016/j.physletb.2003.08.039

S.I. Nojiri, and S.D. Odintsov, “Modified gravity with negative and positive powers of curvature: Unification of inflation and cosmic acceleration,” Physical Review D, 68(12), 123512 (2003). https://doi.org/10.1103/PhysRevD.68.123512

S.I. Nojiri, and S.D. Odintsov, “The minimal curvature of the universe in modified gravity and conformal anomaly resolution of the instabilities,” Modern Physics Letters A, 19(08), 627-638 (2004). https://doi.org/10.1103/PhysRevD.68.123512

T. Harko, F.S. Lobo, S.I. Nojiri, and S.D. Odintsov, “f(R, T) gravity,” Physical Review D, 84(2), 024020 (2011). https://doi.org/10.1103/PhysRevD.84.024020

Y.F Cai, S. Capozziello, M. De Laurentis, and E.N. Saridakis, “f (T) Teleparallel gravity and cosmology,” Reports on Progress in Physics, 79(10), 106901 (2016). https://doi.org/10.1088/0034-4885/79/10/106901

M. Sharif, and M. Zubair, “Thermodynamics in f (R, T) theory of gravity,” Journal of Cosmology and Astroparticle Physics, 2012(03), 028 (2012). https://doi.org/10.1088/1475-7516/2012/03/028

M. Jamil, D. Momeni, and R. Myrzakulov, “Violation of the first law of thermodynamics in f (R, T) gravity,” Chinese Physics Letters, 29(10), 109801 (2012). https://doi.org/10.1088/0256-307X/29/10/109801

D. Momeni, P.H.R.S. Moraes, and R. Myrzakulov, “Generalized second law of thermodynamics in f (R, T) theory of gravity,” Astrophysics and Space Science, 361(7), 228 (2016). https://doi.org/10.1007/s10509-016-2784-2

M.E.S. Alves, P.H.R.S. Moraes, J.C.N. De Araujo, and M. Malheiro, “Gravitational waves in f (R, T) and f (R, T ϕ) theories of gravity,” Physical Review D, 94(2), 024032 (2016). https://doi.org/10.1103/PhysRevD.94.024032

M. Sharif, and A. Siddiqa, “Propagation of polar gravitational waves in f (R, T) scenario,” General Relativity and Gravitation, 51(6), 74 (2019). https://doi.org/10.1007/s10714-019-2558-6

J. Bora, and U.D. Goswami, “Gravitational wave echoes from compact stars in f (R, T) gravity,” Physics of the Dark Universe, 38, 101132 (2022). https://doi.org/10.1016/j.dark.2022.101132

S. Bhattacharjee, and P.K. Sahoo, “Redshift drift in f (R, T) gravity,” New Astronomy, 81, 101425. (2020). https://doi.org/10.1016/j.newast.2020.101425

S. Bhattacharjee, and P.K. Sahoo, “Big bang nucleosynthesis and entropy evolution in f (R, T) gravity,” The European Physical Journal Plus, 135(4), 350 (2020). https://doi.org/10.1140/epjp/s13360-020-00361-4

N. Godani, “FRW cosmology in f (R, T) gravity,” International Journal of Geometric Methods in Modern Physics, 16(02), 1950024 (2019). https://doi.org/10.1142/S0219887819500245

R.K. Tiwari, and D. Sofuoğlu, “Quadratically varying deceleration parameter in f (R, T) gravity,” International Journal of Geometric Methods in Modern Physics, 17(10), 2030003 (2020). https://doi.org/10.1142/S0219887820300032

D.D. Pawar, and S.P. Shahare, “Anisotropic tilted cosmological model in f (R, T) theory of gravity,” New Astronomy, 75, 101318 (2020). https://doi.org/10.1016/j.newast.2019.101318

B. Mishra, F.M. Esmeili, and S. Ray, “Cosmological models with variable anisotropic parameter in f (R, T) gravity,” Indian Journal of Physics, 95, 2245-2254 (2021). http://dx.doi.org/10.1007/s12648-020-01877-2

P.K. Sahoo, S. Mandal, and S. Arora, “Energy conditions in non‐minimally coupled f (R, T) gravity,” Astronomische Nachrichten, 342(1-2), 89-95 (2021). https://doi.org/10.1002/asna.202113886

S. Arora, S. Bhattacharjee, and P.K. Sahoo, “Late-time viscous cosmology in f (R, T) gravity,” New Astronomy, 82, 101452 (2021). https://doi.org/10.1016/j.newast.2020.101452

A.K. Yadav, L.K. Sharma, B.K. Singh, and P.K. Sahoo, “Existence of bulk viscous universe in f (R, T) gravity and confrontation with observational data,” New Astronomy, 78, 101382 (2020). https://doi.org/10.1016/j.newast.2020.101382

V.R. Patil, P.A. Bolke, and N.S. Bayaskar, “Bianchi Type-IX Dust Filled Universe with Ideal Fluid Distribution in Creation Field,” International Journal of Theoretical Physics, 53, 4244-4249 (2014). https://doi.org/10.1007/s10773-014-2175-9

M. Koussour, and M. Bennai, “On a Bianchi type-I space-time with bulk viscosity in f (R, T) gravity,” International Journal of Geometric Methods in Modern Physics, 19(03), 2250038 (2022). https://doi.org/10.1142/S0219887822500384

V.K. Bhardwaj, and A. Dixit, “LRS Bianchi type-I bouncing cosmological models in f (R, T) gravity,” International Journal of Geometric Methods in Modern Physics, 17(13), 2050203 (2020). https://doi.org/10.1142/S0219887820502035

A. Pradhan, A. Dixit, and G. Varshney, “LRS Bianchi type-I cosmological models with periodic time varying deceleration parameter in f (R, T) gravity,” International Journal of Modern Physics A, 37(18), 2250121 (2022). https://doi.org/10.1142/S0217751X22501214

S.N. Gashti, and J. Sadeghi, “Cosmic evolution in the anisotropic space–time from modified f (R, T) gravity,” Pramana, 97(1), 25 (2023). http://dx.doi.org/10.1007/s12043-022-02492-y

S. Jokweni, V. Singh, and A. Beesham, “LRS Bianchi I Cosmological Model with Strange Quark Matter in f (R, T) Gravity,” In MDPI. Physical Sciences Forum, 7(1), 12 (2023). https://doi.org/10.3390/ECU2023-14037

T.W. Kibble, “Topology of cosmic domains and strings,” Journal of Physics A: Mathematical and General, 9(8), 1387 (1976). https://doi.org/10.1088/0305-4470/9/8/029

V. Sahni, T.D. Saini, A.A. Starobinsky, and U. Alam, “Statefinder – a new geometrical diagnostic of dark energy,” Journal of Experimental and Theoretical Physics Letters, 77, 201-206 (2003). https://doi.org/10.1134/1.1574831

Опубліковано
2023-09-04
Цитовано
Як цитувати
Патіл, В., Болке, П., Вагмаре, С., & Павде, Д. (2023). Енергетичні умови та діагностика визначника стану космологічної моделі зі спеціальним законом параметрів Хаббла в f(R,T) гравітації. Східно-європейський фізичний журнал, (3), 53-61. https://doi.org/10.26565/2312-4334-2023-3-03