Вплив біоконвекції на потік неньютонівської хімічно реагуючої нанорідини Вільямсона через розтягнуту поверхню з тепло-та масопереносом

  • Мухаммад Джавад Кафедра математики, Фейсалабадський університет, Фейсалабад, Пакистан https://orcid.org/0000-0002-9304-615X
  • М. Муті-Ур-Рехман Кафедра математики та статистики Університет сільського господарства Фейсалабад, Файсалабад, Пакистан https://orcid.org/0009-0008-5572-5208
  • Коттаккаран Суппі Нісар Кафедра математики, Коледж природничих і гуманітарних наук, Алхардж, Університет принца Саттама бін Абдулазіза, Алкхардж, Саудівська Аравія; Школа технологій, Університет Воксена-Гайдарабад, штат Телангана, Індія https://orcid.org/0000-0001-5769-4320
Ключові слова: гіротаксичний мікроорганізм, нанорідина Вільямсона, МГД, біоконвекція, метод стрільби

Анотація

Метою цієї статті є детальне дослідження змішаного конвективного потоку нанорідини Вільямсона за наявності розтягнутої поверхні з різними фізичними ефектами. Вплив броунівського руху та термофорезу є частиною цього дослідження. Крім того, для мотивації проблеми в рівнянні енергії враховуються особливості теплового випромінювання. Для стабільності моделі використовується теорія мікроорганізму. Проведено математичне моделювання. Відповідні функції подібності використовуються для перетворення пари керуючих PDE в набір ODE. Wolfram MATHEMATICA займається чисельним вирішенням трансформованих рівнянь за допомогою схеми зйомки. Вплив параметрів потоку, таких як магнетизм, термофорез, пористість, число Пекле та Льюїса, на швидкість, температуру, об’ємну концентрацію та щільність розподілу мікроорганізмів представлено в таблицях і графіках.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

S.U. Choi, and J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab., IL (United States), 29, 99-105 (1995). https://www.osti.gov/biblio/196525

M. Jawad, K. Shehzad, R. Safdar, and S. Hussain, “Novel computational study on MHD flow of nanofluid flow with gyrotactic microorganism due to porous stretching sheet,” Punjab University Journal of Mathematics, 52(12), 43-60 (2020). http://pu.edu.pk/images/journal/maths/PDF/Paper_5_52_12_2020.pdf

D. Wen, and Y. Ding, “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” International journal of heat and mass transfer, 47, 5181-5188 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012

P. Bhattacharya, S. Nara, P. Vijayan, T. Tang, W. Lai, P.E. Phelan, R.S. Prasher, D.W. Song, and J. Wang. “Evaluation of the Temperature Oscillation Technique to Calculate Thermal Conductivity of Water and Systematic Measurement of the Thermal Conductivity of Aluminum Oxide–Water Nanofluid,” American Society of Mechanical Engineers Digital Collection, Heat Transfer, 2, 51-56 (2004). https://doi.org/10.1115/IMECE2004-60257

H. Alfven, “Existence of electromagnetic-hydrodynamic waves,” Nature, 150, 405-406 (1942). https://doi.org/10.1038/150405d0

M. Turkyilmazoglu, “Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids,” Chemical Engineering Science, 84, 182-187 (2012). https://doi.org/10.1016/j.ces.2012.08.029

S. Qayyum, T. Hayat, S.A. Shehzad, and A. Alsaedi, “Mixed convection and heat generation/absorption aspects in MHD flow of tangent-hyperbolic nanoliquid with Newtonian heat/mass transfer,” Radiation Physics and Chemistry, 144, 396-404 (2018). http://dx.doi.org/10.1016/j.radphyschem.2017.10.002

S.T. Mohyud-Din, U. Khan, N. Ahmed, and M.M. Rashidi, “A study of heat and mass transfer on magnetohydrodynamic (MHD) flow of nanoparticles,” Propulsion and Power Research, 7, 72-77 (2018). https://doi.org/10.1016/j.jppr.2018.02.001

A. Majeed, A. Zeeshan, and M. Jawad, “Double stratification impact on radiative MHD flow of nanofluid toward a stretchable cylinder under thermophoresis and Brownian motion with multiple slip,” International Journal of Modern Physics B, 2350232, (2023). https://doi.org/10.1142/S0217979223502326

S. Nadeem, R. Ul Haq, and C. Lee, “MHD flow of a Casson fluid over an exponentially shrinking sheet,” Scientia Iranica, 19, 1550-1553 (2012). http://dx.doi.org/10.1016/j.scient.2012.10.021

R.V. Williamson, “The flow of pseudoplastic materials,” Industrial & Engineering Chemistry, 21, 1108-1111 (1929). https://doi.org/10.1021/ie50239a035

T. Hayat, M.Z. Kiyani, A. Alsaedi, M. Ijaz Khan, and I. Ahmad, “Mixed convective three-dimensional flow of Williamson nanofluid subject to chemical reaction,” International Journal of Heat and Mass Transfer, 127, 422-429 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.124

S. Zaman, and M. Gul, “Magnetohydrodynamic bioconvective flow of Williamson nanofluid containing gyrotactic microorganisms subjected to thermal radiation and Newtonian conditions,” Journal of Theoretical Biology, 479, 22-28 (2019). https://doi.org/10.1016/j.jtbi.2019.02.015

G.A. Danish, M. Imran, M. Tahir, H. Waqas, M.I. Asjad, A. Akgül, and D. Baleanu, “Effects of Non-Linear Thermal Radiation and Chemical Reaction‎ on Time Dependent Flow of Williamson Nanofluid with Combine‎ Electrical MHD and Activation Energy,” Journal of Applied and Computational Mechanics, 7(2), 546-558 (2021). https://doi.org/10.22055/jacm.2020.35122.2568

V. Kumar, S.K. Singh, V. Kumar, W. Jamshed, and K.S. Nisar, “Thermal and thermo‐hydraulic behaviour of alumina‐graphene hybrid nanofluid in minichannel heat sink: An experimental study,” International Journal of Energy Research, 45(15), 20700 20714 (2021). https://doi.org/10.1002/er.7134

J. Zhang, S.M. Sajadi, Y. Chen, I. Tlili, and M.A. Fagiry, “Effects of Al2O3 and TiO2 nanoparticles in order to reduce the energy demand in the conventional buildings by integrating the solar collectors a-nd phase change materials,” Sustainable Energy Technologies and Assessments, 52, 102114 (2022). https://doi.org/10.1016/j.seta.2022.102114

I. Tlili, and T. Alharbi, “Investigation into the effect of changing the size of the air quality and stream to the trombe wall for two different arrangements of rectangular blocks of phase change material in this wall,” Journal of Building Engineering, 52, 104328 (2022). https://doi.org/10.1016/j.jobe.2022.104328

X. Qi, M.O. Sidi, I. Tlili, T.K. Ibrahim, M.A. Elkotb, M.A. El-Shorbagy, and Z. Li, “Optimization and sensitivity analysis of extended surfaces during melting and freezing of phase changing materials in cylindrical Lithium-ion battery cooling,” Journal of Energy Storage, 51, 104545 (2022). https://doi.org/10.1016/j.est.2022.104545

J. Alzahrani, H. Vaidya, K.V. Prasad, C. Rajashekhar, D.L. Mahendra, and I. Tlili, “Micro-polar fluid flow over a unique form of vertical stretching sheet: Special emphasis to temperature-dependent properties,” Case Studies in Thermal Engineering, 34, 102037 (2022). https://doi.org/10.1016/j.csite.2022.102037

J. Gao, J. Liu, H. Yue, Y. Zhao, I. Tlili, and A. Karimipour, “Effects of various temperature and pressure initial conditions to predict the thermal conductivity and phase alteration duration of water-based carbon hybrid nanofluids via MD approach,” Journal of Molecular Liquids, 351, 118654 (2022). https://doi.org/10.1016/j.molliq.2022.118654

R.T. Mahmood, M.J. Asad, S.H. Hadri, M.A. El-Shorbagy, A.A.A. Mousa, R.N. Dara, M. Awais, and I. Tlili, “Bioremediation of textile industrial effluents by Fomitopsis pinicola IEBL-4 for environmental sustainability,” Human and Ecological Risk Assessment: An International Journal, 29(2), 285-302, (2023). https://doi.org/10.1080/10807039.2022.2057277

M.K. Nayak, F. Mabood, A.S. Dogonchi, K.M. Ramadan, I. Tlili, and W.A. Khan, “Entropy optimized assisting and opposing non-linear radiative flow of hybrid nanofluid,” Waves in Random and Complex Media, 1-22 (2022). https://doi.org/10.1080/17455030.2022.2032474

K.M. Ramadan, O. Qisieh,, and I. Tlili, “Thermal creep effects on fluid flow and heat transfer in a microchannel gas cooling,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(9), 5033-5047 (2022). https://doi.org/10.1177/09544062211057039

A.V. Kuznetsov, and A.A. Avramenko, “Effect of small particles on this stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth,” International Communications in Heat and Mass Transfer, 31(1), 1-10 (2004). https://doi.org/10.1016/S0735-1933(03)00196-9

U. Khan, N. Ahmed, and S.T. Mohyud-Din, “Influence of viscous dissipation and Joule heating on MHD bio-convection flow over a porous wedge in the presence of nanoparticles and gyrotactic microorganisms,” Springerplus, 5, 1-18 (2016). https://doi.org/10.1186/s40064-016-3718-8

M.J. Uddin, M.N. Kabir, and O.A. Bég, “Computational investigation of Stefan blowing and multiple-slip effects on buoyancy-driven bioconvection nanofluid flow with microorganisms,” International Journal of Heat and Mass Transfer, 95, 116-130 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.015

R. Naz, M. Noor, T. Hayat, M. Javed, and A. Alsaed, “Dynamism of magnetohydrodynamic cross nanofluid with particulars of entropy generation and gyrotactic motile microorganisms,” International Communications in Heat and Mass Transfer, 110, 104431 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2019.104431

F. Aman, W.N.H.W.M. Khazim, and S. Mansur, “Mixed convection flow of a nanofluid containing gyrotactic microorganisms over a stretching/shrinking sheet in the presence of magnetic field,” J. Phys.: Conf. Ser. 890, 012027 (2017). https://doi.org/10.1088/1742-6596/890/1/012027

M. Jawad, F. Mebarek-Oudina, H. Vaidya, and P. Prashar, “Influence of Bioconvection and Thermal Radiation on MHD Williamson Nano Casson Fluid Flow with the Swimming of Gyrotactic Microorganisms Due to Porous Stretching Sheet,” Journal of Nanofluids, 11(4), 500-509 (2022). https://doi.org/10.1166/jon.2022.1863

X. Zhang, D. Yang, M.I.U. Rehman, A. Mousa, and A. Hamid, “Numerical simulation of bioconvection radiative flow of Williamson nanofluid past a vertical stretching cylinder with activation energy and swimming microorganisms,” Case Studies in Thermal Engineering, 33, 101977 (2022). https://doi.org/10.1016/j.csite.2022.101977

M. Jawad, M.K. Hameed, A. Majeed, and K.S. Nisar, “Arrhenius energy and heat transport activates effect on gyrotactic microorganism flowing in maxwell bio-nanofluid with nield boundary conditions,” Case Studies in Thermal Engineering, 41, 102574 (2023). https://doi.org/10.1016/j.csite.2022.102574

M. Jawad, M.K. Hameed, K.S. Nisar, and A.H. Majeed, “Darcy-Forchheimer flow of maxwell nanofluid flow over a porous stretching sheet with Arrhenius activation energy and nield boundary conditions,” Case Studies in Thermal Engineering, 44, 102830 (2023). https://doi.org/10.1016/j.csite.2023.102830

M. Jawad, “Insinuation of Arrhenius Energy and Solar Radiation on Electrical Conducting Williamson Nano Fluids Flow with Swimming Microorganism: Completion of Buongiorno's Model,” East European Journal of Physics, (1), 135-145 (2023). https://periodicals.karazin.ua/eejp/article/view/20900/19827

M. Jawad, “A Computational Study on Magnetohydrodynamics Stagnation Point Flow of Micropolar Fluids with Buoyancy and Thermal Radiation due to a Vertical Stretching Surface,” Journal of Nanofluids, 12, 759-766 (2023). https://doi.org/10.1166/jon.2023.1958

A. Majeed, A. Zeeshan, M. Jawad, and M.S. Alhodaly, “Influence of melting heat transfer and chemical reaction on the flow of non-Newtonian nanofluid with Brownian motion: Advancement in mechanical engineering,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089221145527 (2022). https://doi.org/10.1177/09544089221145527

Опубліковано
2023-06-02
Цитовано
Як цитувати
Джавад, М., Муті-Ур-Рехман, М., & Нісар, К. С. (2023). Вплив біоконвекції на потік неньютонівської хімічно реагуючої нанорідини Вільямсона через розтягнуту поверхню з тепло-та масопереносом. Східно-європейський фізичний журнал, (2), 359-369. https://doi.org/10.26565/2312-4334-2023-2-42