Improvement structural and dielectric properties of PS/SiC/Sb2O3 nanostructures for nanoelectronics devices

  • Маджід Алі Хабіб Вавилонський університет, освітній коледж чистих наук, фізичний факультет, Ірак https://orcid.org/0000-0001-5064-2835
  • Наврас Карім Аль-Шаріфі Вавилонський університет, освітній коледж чистих наук, фізичний факультет, Ірак
Ключові слова: нанокомпозити, полістирол, наночастинки SiC і Sb2O3, електричні властивості для змінного струму

Анотація

У поточному дослідженні нанокомпозити PS/SiC/Sb2O3 були виготовлені методом лиття з розчину з різними концентраціями наночастинок Sb2O3 (0,2,4,6,8) % мас. Досліджено структурні та діелектричні властивості нанокомпозитів (PS/SiC/ Sb2O3). Повний емісійний скануючий електронний мікроскоп (FE-SEM), який використовується для дослідження поверхні нанокомпозиту. FE-SEM підтвердив хороший розподіл НЧ SiC і Sb2O3 в полімерній матриці. Під оптичним мікроскопом (ОМ) було перевірено морфологію нанокомпозиту, що довело, що полістирол є винятково змішуваним, як видно з його більш тонкої форми та гладкої однорідної поверхні, тоді як концентрація добавок SiC та Sb2O3 NPs добре розподілена на поверхні полімерного плівки нанокомпозиту. Інфрачервоною Фур'є спектроскопія (FTIR) досліджено структуру нанокомпозиту та отримана інформація про коливальні властивості молекул. З FTIR додавання SiC і Sb2O3 NP викликало взаємодію з полімерною матрицею. За допомогою FTIR доведено, що існує фізична взаємодія між полістиролом і наночастинками SiC і Sb2O3. Відповідно до електричних властивостей змінного струму діелектрична проникність і діелектричні втрати НК зменшуються зі збільшенням частоти прикладеного електричного поля та збільшуються зі збільшенням концентрації наночастинок SiC/Sb2O3, тоді як електропровідність змінного струму зростає зі збільшенням частоти та концентрації НЧ SiC/Sb2O3. Результати структурних та електричних характеристик показують, що нанокомпозити PS/SiC/Sb2O3 можуть бути використані для різних електронних пристроїв.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

E. Omanović-Mikličanin, A. Badnjević, A. Kazlagić, and M. Hajlovac, “Nanocomposites: a brief review,” Health Technol. (Berl)., 10(1), 51-59 (2020). https://doi.org/10.1007/s12553-019-00380-x

M.A. Habeeb, “Effect of rate of deposition on the optical parameters of GaAs films,” European Journal of Scientific Research, 57 (3), 478-484 (2011)

G. Sahu, M. Das, M. Yadav, B.P. Sahoo, and J. Tripathy, “Dielectric relaxation behavior of silver nanoparticles and graphene oxide embedded poly(vinyl alcohol) nanocomposite film: An effect of ionic liquid and temperature,” Polymers (Basel), 12(2), 1 16 (2020). https://doi.org/10.3390/polym12020374

M.A. Habeeb, and W.K. Kadhim, “Study the optical properties of (PVA-PVAC-Ti) nanocomposites,” Journal of Engineering and Applied Sciences, 9 (4), 109-113(2014). https://doi.org/10.36478/jeasci.2014.109.113

A.H. Hadi, M.A. Habeeb, “Effect of CdS nanoparticles on the optical properties of (PVA-PVP) blends,” Journal of Mechanical Engineering Research an Developments, 44 (3), 265-274 (2021). https//jmerd.net/03-2021-265-274/

P.H.C. Camargo, K.G. Satyanarayana, and F. Wypych, “Nanocomposites: Synthesis, structure, properties and new application opportunities,” Mater. Res. 12(1), 1-39 (2009). https://doi.org/10.1590/S1516-14392009000100002

S.M. Mahdi, M.A. Habeeb, “Synthesis and augmented optical characteristics of PEO–PVA–SrTiO3–NiO hybrid nanocomposites for optoelectronics and antibacterial applications,” Optical and Quantum Electronics, 54 (12) , 854 (2022). https://doi.org/10.1007/s11082-022-04267-6

A.A. Bani-Salameh, A.A. Ahmad, A.M. Alsaad, I.A. Qattan, and I.A. Aljarrah, “Synthesis, optical, chemical and thermal characterizations of PMMA-PS/CeO2 nanoparticles thin film,” Polymers (Basel). 13(7), (2021). https://doi.org/10.3390/polym13071158

S.M. Mahdi, M.A. Habeeb, “Low-cost piezoelectric sensors and gamma ray attenuation fabricated from novel polymeric nanocomposites,” AIMS Materials Science, 10 (2), 288–300 (2023). https://doi.org/10.3934/matersci.2023015

M.A. Habeeb, and W.H. Rahdi, “Titanium carbide nanoparticles filled PVA‑PAAm nanocomposites, structural and electrical characteristicsfor application in energy storage,” Optical and Quantum Electronics, 55 (4) , 334 (2023). https://doi.org/10.1007/s11082-023-04639-6

S.K. Kumar, and R. Krishnamoorti, “Nanocomposites: Structure, phase behavior, and properties,” Annu. Rev. Chem. Biomol. Eng. 1, 37-58 (2010). https://doi.org/10.1146/annurev-chembioeng-073009-100856

M.A. Habeeb, Z.S. Jaber, “Enhancement of Structural and Optical Properties of CMC/PAA Blend by Addition of Zirconium Carbide Nanoparticles for Optics and Photonics Applications,” East Eur. J. Physics, 4, 176-182 (2022). https://doi.org/10.26565/2312-4334-2022-4-18

A.H. Hadi, M.A. Habeeb, “The dielectric properties of (PVA-PVP-CdS) nanocomposites for gamma shielding applications,” Journal of Physics: Conference Series,1973(1),012063 (2021). https://doi.org/10.1088/1742-6596/1973/1/012063

M.S. Aziz, and H.M. El-Mallah, “AC Conductivity and Dielectric Properties of Polycarbonate Sheet,” International Journal of Polymeric Materials, 54(12), 1157-1168 (2005).

S.M. Mahdi, M.A. Habeeb, “Fabrication and Tailored Structural and Dielectric characteristics of (SrTiO3/NiO) Nanostructure Doped (PEO/PVA) polymeric Blend for Electronics Fields,” Physics and Chemistry of Solid State, 23 (4), 785 792 (2022). https://doi.org/0.15330/pcss.23.4.785-792

J. Wang, and S. Wang, “Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants,” Chem. Eng. J. 334, 1502-1517 (2018), https://doi.org/10.1016/j.cej.2017.11.059

M.H. Dwech, M.A. Habeeb, and A.H. Mohammed, “Fabrication and Evaluation of Optical Characterstic of (PVA-MnO2–ZrO2) Nanocomposites for Nanodevices in Optics and Photonics,” Ukr. J. Phys. 67 (10), 757-762 (2022). https://doi.org/10.15407/ujpe67.10.757

S.M. Mahdi, and M.A. Habeeb, “Tailoring the structural and optical features of (PEO–PVA)/(SrTiO3–CoO) polymeric nanocomposites for optical and biological applications,” Polymer Bulletin, (2023). https://doi.org/10.1007/s00289-023-04676-x

J.P. Cao, J. Zhao, X. Zhao, G.H. Hu, and Z.M. Dang, “Preparation and characterization of surface modified silicon carbide/polystyrene nanocomposites,” J. Appl. Polym. Sci, 130(1), 638-644 (2013). https://doi.org/10.1002/app.39186

A.A. Mohammed, and M.A. Habeeb, “Modification and Development of the Structural, Optical and Antibacterial Characteristics of PMMA/Si3N4/TaC Nanostructures,” Silicon, (2023). https://doi.org/10.1007/s12633-023-02426-2

S.M. Mahdi, M.A. Habeeb, “Evaluation of the influence of SrTiO3 and CoO nanofillers on the structural and electrical polymer blend characteristics for electronic devices,” Digest Journal of Nanomaterials and Biostructures, 17(3), 941-948 (2022). https://doi.org/10.15251/DJNB.2022.173.941

C. Ye, G. Wang, M. Kong, and L. Zhang, “Controlled synthesis of Sb2O3 nanoparticles, nanowires, and nanoribbons,” J. Nanomater. 2006, 1-5 (2006). https://doi.org/10.1155/JNM/2006/95670

N.K. Al‑Sharifi, and M.A. Habeeb, “Synthesis and Exploring Structural and Optical Properties of Ternary PS/SiC/Sb2O3 Nanocomposites for Optoelectronic and Antimicrobial Applications,” Silicon, (2023). https://doi.org/10.1007/s12633-023-02418-2

M.A. Habeeb, “Dielectric and optical properties of (PVAc-PEG-Ber) biocomposites,” Journal of Engineering and Applied Sciences, 9 (4), 102-108 (2014). https://doi.org/10.36478/jeasci.2014.102.108

M.A. Habeeb, A. Hashim, and N. Hayder, “Structural and optical properties of novel (PS-Cr2O3/ZnCoFe2O4) nanocomposites for UV and microwave shielding,” Egyptian Journal of Chemistry, 63, 697-708 (2020). https://dx.doi.org/10.21608/ejchem.2019.12439.1774

A. De Girolamo Del Mauro, S. Galvagno, G. Nenna, R. Miscioscia, C. Minarini, and S. Portofino, “End-of-Waste SiC-Based Flexible Substrates with Tunable Electrical Properties for Electronic Applications,” Langmuir, 32(41), 10497-10504 (2016). https://doi.org/10.1021/acs.langmuir.6b02716

M.A. Habeeb, and R.S. Abdul Hamza, “Novel of (biopolymer blend-MgO) nanocomposites: Fabrication and characterization for humidity sensors,” Journal of Bionanoscience, 12 (3), 328-335 (2018). https://doi.org/10.1166/jbns.2018.1535

M.A. Habeeb, and R.S.A. Hamza, “Synthesis of (polymer blend –MgO) nanocomposites and studying electrical properties for piezoelectric application,” Indonesian Journal of Electrical Engineering and Informatics, 6 (4), 428-435 (2018). https://doi.org/10.11591/ijeei.v6i1.511

D.K. Pradhan, R.N.P. Choudhary, and B.K. Samantaray, “Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes,” Int. J. Electrochem. Sci. 3(5), 597-608 (2008).

M.A. Habeeb, and W.S. Mahdi, “Characterization of (CMC-PVP-Fe2O3) nanocomposites for gamma shielding application,” International Journal of Emerging Trends in Engineering Research, 7 (9), 247-255 (2019). https://doi.org/10.30534/ijeter/2019/06792019

M.F.H. Al-Kadhemy, Z.S. Rasheed, and S.R. Salim, “Fourier transform infrared spectroscopy for irradiation coumarin doped polystyrene polymer films by alpha ray,” Journal of Radiation Research and Applied Sciences, 9(3), 321-331 (2016).

Q.M. Jebur, A. Hashim, and M.A. Habeeb, “Fabrication, structural and optical properties for (Polyvinyl alcohol-polyethylene oxide iron oxide) nanocomposites,” Egyptian Jour of Chemistry, 63 (2), 611-623 (2020). https://dx.doi.org/10.21608/ejchem.2019.10197.1669

R.N. Bhagat, and V.S. Sangawar, “Synthesis and Structural Properties of Polystyrene Complexed with Cadmium Sulfide,” Int. J. Sci. Res. (IJSR), 6, 361-365 (2017).

A. Hashim, M.A. Habeeb, and Q.M. Jebur, “Structural, dielectric and optical properties for (Polyvinyl alcohol-polyethylene oxide manganese oxide) nanocomposites,” Egyptian Journal of Chemistry, 63, 735-749 (2020). https://dx.doi.org/10.21608/ejchem.2019.14849.1901

L. Kungumadevi, R. Sathyamoorthy, and A. Subbarayan, “AC conductivity and dielectric properties of thermally evaporated PbTe thin films,” Solid. State. Electron. 54(1), 58-62 (2010). https://doi.org/10.1016/j.sse.2009.09.023

M.A. Habeeb, A. Hashim, and N. Hayder, “Fabrication of (PS-Cr2O3/ZnCoFe2O4) nanocomposites and studying their dielectric and fluorescence properties for IR sensors,” Egyptian Journal of Chemistry, 63, 709-717 (2020). https://dx.doi.org/10.21608/ejchem.2019.13333.1832

Q.M. Jebur, A. Hashim, and M.A. Habeeb, “Structural, A.C electrical and optical properties of (polyvinyl alcohol-polyethylene oxide-aluminum oxide) nanocomposites for piezoelectric devices,” Egyptian Journal of Chemistry, 63, 719-734 (2020). https://dx.doi.org/10.21608/ejchem.2019.14847.1900

R. Dalven, and R. Gill, “Electrical properties of β-Ag2Te and β-Ag2Se from 4.2°to 300°K,” J. Appl. Phys. 38(2), 753-756 (1967). https://doi.org/10.1063/1.1709406

N. Hayder, M.A. Habeeb, and A. Hashim, Structural, optical and dielectric properties of (PS-In2O3/ZnCoFe2O4) nanocomposites,” Egyptian Journal of Chemistry, 63, 577-592 (2020). https://doi.org/10.21608/ejchem.2019.14646.1887

Y. Li, H. Porwal, Z. Huang, H. Zhang, E. Bilotti, and T. Peijs, “Enhanced Thermal and Electrical Properties of Polystyrene-Graphene Nanofibers via Electrospinning,” J. Nanomater. 2016, (2016). https://doi.org/10.1155/2016/4624976

S. Ju1, M. Chen, H. Zhang, and Z. Zhang, “Dielectric properties of nanosilica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced nanoparticles,” Journal of express Polymer Letters, 8(9), 682-691 (2014).

C. M. Mathew, K. Kesavan, and S. Rajendran, “Structural and Electrochemical Analysis of PMMA Based Gel Electrolyte Membranes,” Int. J. Electrochem. 2015, 1-7 (2015). https://doi.org/10.1155/2015/494308

O. Abdullah, G.M. Jamal, D.A. Tahir, and S.R. Saeed, “Electrical Characterization of Polyester Reinforced by Carbon Black Particles,” International Journal of Applied Physics and Mathematics, 1(2), 101-105 (2011).

Опубліковано
2023-06-02
Цитовано
Як цитувати
Хабіб, М. А., & Аль-Шаріфі, Н. К. (2023). Improvement structural and dielectric properties of PS/SiC/Sb2O3 nanostructures for nanoelectronics devices. Східно-європейський фізичний журнал, (2), 341-347. https://doi.org/10.26565/2312-4334-2023-2-40