Дослідження термоелектричних властивостей сплаву напівгейслера ZrCoBi, легованого Ni/Co

  • Махмуд Аль Елаймі Факультет фундаментальних наук, Університет Хаїль, Хаїль, Саудівська Аравія https://orcid.org/0000-0001-6985-1012
Ключові слова: ab initio розрахунки, сплави напівгейслера, ZrCoBi, легування Ni/Co, термоелектричні властивості, транспортні властивості

Анотація

Термоелектричні (TE) композити Half-Heusler (HH) були перевірені через їхні відмінні TE властивості в діапазоні середніх і високих температур. Розрахунки на основі першопринципів полегшують відкриття або покращення більшої кількості сполук HH. У статті представлено теоретичну оцінку TE властивостей сплаву Half-Heusler ZrCoBi, легованого нікелем (Ni), з використанням FP-LAPW і напівкласичної теорії Больцмана. Термоелектричні параметри розраховувалися за допомогою коду BoltzTraP, наприклад, коефіцієнт Зеєбека (S), відношення електропровідності до часу релаксації (σ/τ), відношення електронної теплопровідності до часу релаксації (κ_e/τ), відношення коефіцієнта термоелектричної потужності до часу релаксації (S2σ/τ), а також безрозмірну добротність (ZT) в діапазоні температур 0-500 К. Розрахований коефіцієнт Зеєбека показує, що досліджувані сплави демонструють тенденцію до провідності p-типу зі збалансованою TE характеристикою між обома носіями заряду (дірки та електрони). Знайдено високе значення електронної теплопровідності, що передбачає потенційне використання досліджуваних сплавів у тепловідвідних програмах. Отримані результати, такі як високий коефіцієнт термоелектричної потужності та ZT ≅ 1, припускають, що сплави ZrCo1-xNixBi можуть мати потенційне термоелектричне застосування.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

M.M. Alam, M.A. Aktar, N.D.M. Idris, and A.Q. Al-Amin, J World Development Sustainability, 2, 100048 (2023), https://doi.org/10.1016/j.wds.2023.100048

C. Gayner, and K. K. Kar, J. Progress in Materials Science, 83, 330-382 (2016), https://doi.org/10.1016/j.pmatsci.2016.07.002

R. Liu, H. Chen, K. Zhao, Y. Qin, B. Jiang, T. Zhang, G. Sha, X. Shi, C. Uher and W. Zhang, J. Advanced Materials, 29(38), 1702712 (2017), https://doi.org/10.1002/adma.201702712

T. Zhu, C. Fu, H. Xie, Y. Liu and X. Zhao, Advanced Energy Materials, 5(19), 1500588 (2015), https://doi.org/10.1002/aenm.201500588

A. Mubarak, S. Saad, F. Hamioud and M. Al-Elaimi, J. Solid State Sciences, 111, 106397 (2021), https://doi.org/10.1016/j.solidstatesciences.2020.106397

J. Wei, L. Yang, Z. Ma, P. Song, M. Zhang, J. Ma, F. Yang and X. Wang, J. Journal of Materials Science, 55, 12642-12704 (2020), https://doi.org/10.1007/s10853-020-04949-0

D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang and H. Xie, J. Nano-Micro Letters, 12, 1-40 (2020), https://doi.org/10.1007/s40820-020-0374-x

P.A. Finn, C. Asker, K. Wan, E. Bilotti, O. Fenwick, and C.B. Nielsen, J. Frontiers in Electronic Materials, 1, 677845 (2021), https://doi.org/10.3389/femat.2021.677845

Y. Zheng, T.J. Slade, L. Hu, X.Y. Tan, Y. Luo, Z.-Z. Luo, J. Xu, Q. Yan and M. G. Kanatzidis, J. Chemical Society Reviews, 50 (16), 9022-9054 (2021), https://doi.org/10.1039/D1CS00347J

A. Kumar, S. Bano, B. Govind, A. Bhardwaj, K. Bhatt and D. Misra, J. of Electronic Materials 50, 6037-6059 (2021), https://doi.org/10.1007/s11664-021-09153-7

Z. Bu, W. Li, J. Li, X. Zhang, J. Mao, Y. Chen, and Y. Pei, J. Materials Today Physics, 9, 100096 (2019), https://doi.org/10.1016/j.mtphys.2019.100096

S. Roychowdhury, R.K. Biswas, M. Dutta, S.K. Pati, and K. Biswas, J. ACS Energy Letters, 4 (7), 1658-1662 (2019), https://doi.org/10.1021/acsenergylett.9b01093

S. Li, J. Yang, J. Xin, Q. Jiang, Z. Zhou, H. Hu, B. Sun, A. Basit, and X. Li, J. ACS Applied Energy Materials, 2 (3), 1997-2003 (2019), https://doi.org/10.1021/acsaem.8b02096

K. Elphick, W. Frost, M. Samiepour, T. Kubota, K. Takanashi, H. Sukegawa, S. Mitani and A. Hirohata, J. Science technology of advanced materials, 22 (1), 235-271 (2021), https://doi.org/10.1080/14686996.2020.1812364

K. Xia, C. Hu, C. Fu, X. Zhao and T. Zhu, J. Applied Physics Letters, 118 (14), 140503 (2021), https://doi.org/10.1063/5.0043552

F. Parvin, M. Hossain, I. Ahmed, K. Akter, and A. Islam, J. Results in Physics, 23, 104068 (2021), https://doi.org/10.1016/j.rinp.2021.104068

Z. Almaghbash, O. Arbouche, A. Dahani, A. Cherifi, M. Belabbas, A. Zenati, H. Mebarki, and A. Hussain, J. International Journal of Thermophysics, 42, 1-19 (2021), https://doi.org/10.1007/s10765-020-02755-z

S. Dhanal, A. Ghaste, V. Akkimardi, S. Kori, and C. Bhosale, AIP Conference Proceedings, 2162(1), 020002 (2019), https://doi.org/10.1063/1.5130212

V.K. Solet, S. Sk, and S.K. Pandey, J. Physica Scripta, 97(10), 105711 (2022), https://doi.org/10.1088/1402-4896/ac93c1

T. Graf, C. Felser and S.S. Parkin, J. Progress in solid state chemistry, 39(1), 1-50 (2011), https://doi.org/10.1016/j.progsolidstchem.2011.02.001

G.A. Naydenov, P.J. Hasnip, V. Lazarov, and M. Probert, J. Journal of physics: Materials, 2(3), 035002 (2019), https://doi.org/10.1088/2515-7639/ab16fb

M.K. Bamgbose, J. Applied Physics A, 126(564), 1-8 (2020), https://doi.org/10.1007/s00339-020-03691-3

D. Vishali, and R. John, J. Journal of Crystal Growth, 583, 126556 (2022), https://doi.org/10.1016/j.jcrysgro.2022.126556

W.Y.S. Lim, D. Zhang, S.S.F. Duran, X.Y. Tan, C.K.I. Tan, J. Xu, and A. Suwardi, J. Frontiers in Materials, 8, 745698 (2021), https://doi.org/10.3389/fmats.2021.745698

R. Majumder, M.M. Hossain, and D. Shen, J. Modern Physics Letters B, 33(30), 1950378 (2019), https://doi.org/10.1142/S0217984919503780

E. Rausch, B. Balke, S. Ouardi and C. Felser, J. Energy Technology, 3 (12), 1217-1224 (2015), https://doi.org/10.1002/ente.201500183

A.S. Gzyl, A.O. Oliynyk, and A. Mar, J. Crystal Growth Design, 20(10), 6469-6477 (2020), https://doi.org/10.1021/acs.cgd.0c00646

M. Sato, Y.W. Chai, and Y. Kimura, ACS Appl. Mater. Interfaces, 13(21), 25503-25512 (2021), https://doi.org/10.1021/acsami.1c03525

T. Chibueze, A. Raji, and C. Okoye, J. Phys. Chem. Solids, 139, 109328 (2020), https://doi.org/10.1016/j.jpcs.2019.109328

X. Zhang, S. Li, B. Zou, P. Xu, Y. Song, B. Xu, Y. Wang, G. Tang, and S. Yang, J. of Alloys and Compounds, 901, 163686 (2022), https://doi.org/10.1016/j.jallcom.2022.163686

A. Mubarak, S. Tariq, F. Hamioud, and B. Alsobhi, Journal of Physics: Condensed Matter, 31(50), 505705 (2019), https://doi.org/10.1088/1361-648X/ab3140

M.T. Qureshi, F. Ullah, R.S.A. Hameed, M. Al-Elimi, J. Humadi, A. Nassar, M. Badr, K.A. Halim, and M. Saleem, J. Ceramics International, (2023), https://doi.org/10.1016/j.ceramint.2023.03.103

L. Huang, Q. Zhang, Y. Wang, R. He, J. Shuai, J. Zhang, C. Wang, and Z. Ren, J. Physical Chemistry Chemical Physics, 19(37), 25683-25690 (2017), https://doi.org/10.1039/C7CP04801G

N. Nenuwe, and E. Omugbe, J. Current Applied Physics, 49, 70-77 (2023), https://doi.org/10.1016/j.cap.2023.02.013

Y. Dhakshayani, G. Suganya, and G. Kalpana, Journal of Crystal Growth, 583, 126550 (2022), https://doi.org/10.1016/j.jcrysgro.2022.126550

N. Ibrahim, R.A. Ahmed, H. Adri, and I. Reisya, J. Materials Today Communications, 32, 103908 (2022), https://doi.org/10.1016/j.mtcomm.2022.103908

H. Zhu, R. He, J. Mao, Q. Zhu, C. Li, J. Sun, W. Ren, Y. Wang, Z. Liu and Z. Tang, J. Nature communications, 9(1), 1-9 (2018), https://doi.org/10.1038/s41467-018-04958-3

M. Yazdani-Kachoei, and S. Jalali-Asadabadi, Journal of alloys compounds, 828, 154287 (2020), https://doi.org/10.1016/j.jallcom.2020.154287

H. Zhu, J. Mao, Z. Feng, J. Sun, Q. Zhu, Z. Liu, D.J. Singh, Y. Wang, and Z. Ren, J .Science advances, 5(6), eaav5813 (2019), https://doi.org/10.1126/sciadv.aav5813

M. Al-Elaimi, East Eur. J. Phys. (2), 103-111 (2022), https://doi.org/10.26565/2312-4334-2022-2-13

P. Blaha, K. Schwarz, P. Sorantin, and S. Trickey, J. Computer physics communications, 59(2), 399-415 (1990), https://doi.org/10.1016/0010-4655(90)90187-6

P. Hohenberg, and W. Kohn, J. Physical Review, 136(3B), B864 (1964), https://doi.org/10.1103/PhysRev.136.B864

J.P. Perdew, K. Burke, and M. Ernzerhof, J. Physical review letters, 77(18), 3865 (1996), https://doi.org/10.1103/PhysRevLett.77.3865

G.K. Madsen, and D.J. Singh, J, Computer physics communications, 175(1), 67-71 (2006), https://doi.org/10.1016/j.cpc.2006.03.007

M. Cutler, and N. F. Mott, J. Physical Review, 181(3), 1336 (1969), https://doi.org/10.1103/PhysRev.181.1336

Опубліковано
2023-06-02
Цитовано
Як цитувати
Аль Елаймі, М. (2023). Дослідження термоелектричних властивостей сплаву напівгейслера ZrCoBi, легованого Ni/Co. Східно-європейський фізичний журнал, (2), 234-240. https://doi.org/10.26565/2312-4334-2023-2-26