Визначення зонної структури та комптонових профілів для алюмінію-арсеніду з використанням теорії функціоналу щільності

  • Самін Ф. Мохаммед Кафедра механічних технологій, Технічний інститут Кіркук, Північний технічний університет, Ірак
  • Салах М.А. Рідха Факультет фізики, Науковий коледж, Університет Кіркука, Ірак https://orcid.org/0000-0003-0569-3849
  • Абдулхаді Мірдан Галеб Факультет фізики, Науковий коледж, Університет Кіркука, Ірак https://orcid.org/0000-0002-2202-8827
  • Захра Таліб Галеб Кафедра хімії Наукового коледжу Кіркукського університету, Кіркук, Ірак https://orcid.org/0000-0003-0569-3849
  • Яміна Бенкріма Департамент точних наук, ENS Уаргла, Алжир https://orcid.org/0000-0001-8005-4065
  • Махран Абдулрхман Абдулла Міністерство освіти, Директорат освіти Кіркука, Ірак
Ключові слова: узагальнена градієнтна апроксимація, апроксимація локалізованої щільності, теорія функціонала густини, енергетична заборонена зона, щільність станів, іонна модель, Комптон-профілі

Анотація

Основні розрахунки електричних характеристик AlAs були проведені з використанням теорії функціоналу щільності (DFT) і локальної щільності (LDA), методів (DFT) і узагальненої градієнтної апроксимації (GGA). Ми використали реалізацію базового набору плоских хвиль CASTEP для обчислення загальної енергії (спочатку з Cambridge Serial Total Energy Package). Раніше ми дивилися на структурний параметр структури AlAs. Ширина забороненої зони була переоцінена за допомогою узагальненої градієнтної апроксимації та методів LDA, хоча ширина забороненої зони, передбачена GGA, більше відповідає експериментальним висновкам, згідно з розрахунком електронної структури з використанням двох наближень. За допомогою GGA розрахунку виявлено напівпровідник із шириною забороненої зони 2,5 еВ. Енергетична зонна діаграма була використана для розрахунку повної та часткової густини станів AlAs. Було розраховано кілька конфігурацій іонної моделі. Al+xAsx (0.0 ≤ x ≤ 1) також виконуються з використанням профілів вільних атомів. Відповідно до іонної моделі, 0,75 електрона буде перенесено з валентного 5p-стану алюмінію в 3p-стан арсеніду.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

R. Ahmed, S.J. Hashemifar, H. Akbarzadeh, and M. Ahmed, “Ab initio study of structural and electronic properties of III-arsenide binary compounds,” Computational materials science, 39(3), 580-586 ‏(2007). https://doi.org/10.1016/j.commatsci.2006.08.014

A. Mujica, A. Rubio, A. Munoz, and R.J. Needs, “High-pressure phases of group-IV, III–V, and II–VI compounds,” Reviews of modern physics, 75(3), 863‏(2003). https://doi.org/10.1103/RevModPhys.75.863

D.J. Stukel, and R.N. Euwema, “Energy-band structure of aluminum arsenide,” Physical Review, 188(3), 1193‏ (1969). https://doi.org/10.1103/PhysRev.188.1193

B.I. Min, S. Massidda, and A.J. Freeman, “Structural and electronic properties of bulk GaAs, bulk AlAs, and the (GaAs)1 (AlAs)1 superlattice,” Physical Review B, 38(3), 1970 ‏(1988). https://doi.org/10.1103/PhysRevB.38.1970

M.Z. Huang, and W.Y. Ching, “Calculation of optical excitations in cubic semiconductors. I. Electronic structure and linear response,” Physical Review B, 47(15), 9449 (1993). https://doi.org/10.1103/PhysRevB.47.9449

S. Lebègue, B. Arnaud, M. Alouani, and P.E. Bloechl, “Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH,” Physical Review B, 67(15), 155208 ‏(2003). https://doi.org/10.1103/PhysRevB.67.155208

T.B. Boykin, “Generalized eigenproblem method for surface and interface states: The complex bands of GaAs and AlAs,” Physical Review B, 54(11), 8107 (1996). https://doi.org/10.1103/PhysRevB.54.8107

J.P. Loehr, and D.N. Talwar, “Exact parameter relations and effective masses within sp 3 szinc-blende tight-binding models,” Physical Review B, 55(7), 4353‏ (1997). https://doi.org/10.1103/PhysRevB.55.4353

A.B. Chen, and A. Sher, “Electronic structure of III-V semiconductors and alloys using simple orbitals,” Physical Review B, 22(8), 3886‏ (1980). https://doi.org/10.1103/PhysRevB.22.3886

R.W. Godby, M. Schlüter, and L.J. Sham, “Quasiparticle energies in GaAs and AlAs,” Physical Review B, 35(8), 4170 ‏(1987). https://doi.org/10.1103/PhysRevB.35.4170

P. Boguslawski, and I. Gorczyca, “Influence of chemistry on the energy band structure: AlAs versus GaAs,” Acta Physica Polonica, A, 80(3), 433-436 ‏(1991). http://dx.doi.org/10.12693/APhysPolA.80.433

B.K. Agrawal, and S. Agrawal, “Ab initio calculation of the electronic, structural, and dynamical properties of AlAs and CdTe,” Physical Review B, 45(15), 8321‏ (1992). https://doi.org/10.1103/PhysRevB.45.8321

Q. Guo, C.K. Ong, H.C. Poon, and Y.P. Feng, “Calculation of electron effective masses in AlAs,” Physica Status Solidi (b), 197(1), 111-117 ‏(1996). https://doi.org/10.1002/pssb.2221970117

P. Hohenberg, and W. Kohn, “Inhomogeneous electron gas,” Physical review, 136(3B), B864 ‏(1964). https://doi.org/10.1103/PhysRev.136.B864

W. Kohn, and L.J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical review, 140(4A), A1133 ‏(1965). https://doi.org/10.1103/PhysRev.140.A1133

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, et al., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” Journal of physics: Condensed matter, 21(39), 395502‏ (2009). https://doi.org/10.1088/0953-8984/21/39/395502

S. Froyen, and M.L. Cohen, “Structural properties of III-V zinc-blende semiconductors under pressure,” Physical Review B, 28(6), 3258 ‏(1983). https://doi.org/10.1103/PhysRevB.28.3258

A. Mujica, R.J. Needs, and A. Munoz, “First-principles pseudopotential study of the phase stability of the III-V semiconductors GaAs and AlAs,” Physical Review B, 52(12), 8881 ‏(1995). https://doi.org/10.1103/PhysRevB.52.8881

M. Städele, M. Moukara, J.A. Majewski, P. Vogl, and A. Görling, “Exact exchange Kohn-Sham formalism applied to semiconductors,” Physical Review B, 59(15), 10031 ‏(1999). https://doi.org/10.1103/PhysRevB.59.10031

A.R. Jivani, H.J. Trivedi, P.N. Gajjar, and A.R. Jani, “Total energy, equation of state and bulk modulus of AlP, AlAs and AlSb semiconductors,” Pramana, 64(1), 153-158 (2005). https://doi.org/10.1007/BF02704540

H. Jin, G.L. Zhao, and D. Bagayoko, “Density functional band gaps of AlAs,” Physical Review B, 73(24), 245214‏ (2006). https://doi.org/10.1103/PhysRevB.73.245214

K.B. Joshi, and B.K. Sharma, “Compton profile study of AlAs and AlP by empirical pseudopotential method,” Proceedings-national academy of sciences India, Section A, 76(1), 79‏ (2006). http://nasi.nic.in/76_a_I_14.htm

J. Cai, and N. Chen, “Theoretical study of pressure-induced phase transition in AlAs: From zinc-blende to NiAs structure,” Physical Review B, 75(17), 174116 ‏(2007). https://doi.org/10.1103/PhysRevB.75.174116

N. Fraj, I. Saïdi, S.B. Radhia, and K. Boujdaria, “Band structures of AlAs, GaP, and SiGe alloys: A 30 k×p model,” Journal of Applied Physics, 102(5), 053703‏ (2007). https://doi.org/10.1063/1.2773532

H. Arabshahi, M.R. Khalvati, and M.R. Rokn-Abadi, “Temperature and doping dependencies of electron mobility in InAs, AlAs and AlGaAs at high electric field application,” Brazilian Journal of Physics, 38, 293-296 ‏(2008). https://doi.org/10.1590/S0103-97332008000300001

B. Monemar, “Optical Dispersion and Ionicity of AlP and AlAs,” Physica Scripta, 3(3-4), 193 (1971). https://doi.org/10.1088/0031-8949/3/3-4/015

B. Monemar, “Fundamental energy gaps of AlAs and AlP from photoluminescence excitation spectra,” Physical Review B, 8(12), 5711-5718 (1973). https://doi.org/10.1103/PhysRevB.8.5711

A. Onton, and R.J. Chicotka, “Free-exciton-impurity interaction in AlAs,” Physical Review B, 10(2), 591 (1974). https://doi.org/10.1103/PhysRevB.10.591

R.G. Greene, H. Luo, T. Li, and A.L. Ruoff, “Phase transformation of AlAs to NiAs structure at high pressure,” Physical review letters, 72(13), 2045 (1994). https://doi.org/10.1103/PhysRevLett.72.2045

D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Physical review B, 41(11), 7892 ‏(1990). https://doi.org/10.1103/PhysRevB.41.7892

J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Physical review letters, 100(13), 136406‏ (2008). https://doi.org/10.1103/PhysRevLett.100.136406

S.H. Vosko, L. Wilk, and M. Nusair, “Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis,” Canadian Journal of physics, 58(8), 1200-1211 ‏(1980). https://doi.org/10.1139/p80-159

V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, and R.H. Nobes, “Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane‐wave study,” International Journal of Quantum Chemistry, 77(5), 895-910‏ (2000). https://doi.org/10.1002/(SICI)1097-461X(2000)77:5%3C895::AID-QUA10%3E3.0.CO;2-C

M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and A.J. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Reviews of modern physics, 64(4), 1045 (1992). https://doi.org/10.1103/RevModPhys.64.1045

‏ F. Biggs, L.B. Mendelsohn, and J.B. Mann, “Hartree-Fock Compton profiles for the elements,” Atomic data and nuclear data tables, 16(3), 201-309 ‏(1975). https://doi.org/10.1016/0092-640X(75)90030-3

S.F. Mohammed, A.M. Ghaleb, and E.S. Ali, “Electron Momentum Density of Nan particles ZrO2: A Compton Profile Study,” International Journal of Nanoscience, 20(02), 2150018 ‏(2021). https://doi.org/10.1142/S0219581X21500186

G. Sharma, K.B. Joshi, M.C. Mishra, R.K. Kothari, Y.C. Sharma, V. Vyas, and B.K. Sharma, “Electronic structure of AlAs: a Compton profile study,” Journal of alloys and compounds, 485(1-2), 682-686 (2009). http://dx.doi.org/10.1016%2Fj.jallcom.2009.06.043

‏ A.M. Ghaleb, A.T. Shihatha, and Z.T. Ghaleb, “Investigation of the physical properties and Mulliken charge distribution of the cube perovskite BiGaO3 is calculated by GGA-PBE,” Digest Journal of Nanomaterials and Biostructures (DJNB), 17(4), ‏(2022). https://doi.org/10.15251/DJNB.2022.174.1181

M.P. Thompson, G.W. Auner, T.S. Zheleva, K.A. Jones, S.J. Simko, and J.N. Hilfiker, “Deposition factors and band gap of zinc-blende AlN,” Journal of Applied Physics, 89(6), 3331-3336‏ (2001). https://doi.org/10.1063/1.1346999

K. Boubendira, H. Meradji, S. Ghemid, and F.E.H. Hassan, “Theoretical prediction of the structural, electronic, and thermal properties of Al1−xBxAs ternary alloys,” Materials science in semiconductor processing, 16(6), 2063-2069‏ (2013). https://doi.org/10.1016/j.mssp.2013.07.022

D. Kirin, and I. Lukačević, “Stability of high-pressure phases in II-VI semiconductors by a density functional lattice dynamics approach,” Physical Review B, 75(17), 172103 ‏(2007). https://doi.org/10.1103/PhysRevB.75.172103

A.M. Ghaleb, and A.Q. Ahmed, “Structural, electronic, and optical properties of sphalerite ZnS compounds calculated using density functional theory (DFT),” Chalcogenide Letters, 19(5),‏ 309-318 (2022). https://doi.org/10.15251/CL.2022.195.309

C.N. Louis, and K. Iyakutti, “Electronic phase transition and superconductivity of vanadium under high pressure,” Physical Review B, 67(9), 094509 ‏(2003). https://doi.org/10.1103/PhysRevB.67.094509

A.T. Shihatha, A.M. Ghaleb, and R.A. Munfi, “Theoretical study of electronic structure and optical properties for ZnO thin film,” AIP Conference Proceedings, 2398(1), 020023 (2022). https://doi.org/10.1063/5.0094037

Опубліковано
2023-06-02
Цитовано
Як цитувати
Мохаммед, С. Ф., Рідха, С. М., Галеб, А. М., Галеб, З. Т., Бенкріма, Я., & Абдулла, М. А. (2023). Визначення зонної структури та комптонових профілів для алюмінію-арсеніду з використанням теорії функціоналу щільності. Східно-європейський фізичний журнал, (2), 132-137. https://doi.org/10.26565/2312-4334-2023-2-12