Вплив наноматеріалів Si3N4/TaC на структурні та електричні характеристики поліметилметакрилату для електротехніки та електроніки

  • Алаа Абас Мохаммед Вавилонський університет, Освітній коледж чистих наук, Фізичний факультет, Ірак
  • Маджід Алі Хабіб Вавилонський університет, Освітній коледж чистих наук, Фізичний факультет, Ірак https://orcid.org/0000-0001-5064-2835
Ключові слова: нанокомпозити, ПММА, Si3N4, TaC, електричні властивості змінного струму

Анотація

У цьому дослідженні використовувався метод лиття для отримання нанокомпозитів PMMA/ Si3N4/TaC з різним вмістом (0,2,4,6,8) % мас. наночастинок (НЧ) Si3N4/TaC. Досліджено структурні та електричні властивості. Дослідження на скануючому електронному мікроскопі (SEM) вказують на однорідність, гладкість і дисперсію НЧ Si3N4 і TaC всередині матриці ПММА через сильну ковалентну взаємодію між НЧ Si3N4 і TaC в матриці ПММА, що означає хороший метод для підготовлених плівок. Зображення з оптичного мікроскопа пояснюють, що збільшення вмісту наночастинок утворює мережеві шляхи всередині полімерної матриці, які діють як носії заряду. Спектри FTIR вказують на фізичну інтерференцію між полімерною матрицею та наночастинками. Електричні властивості змінного струму нанокомпозитів показали, що діелектрична проникність і діелектричні втрати зростають зі збільшенням вмісту наночастинок і зменшуються зі збільшенням частоти прикладеного електричного поля. Тоді як електропровідність змінного струму зростає зі збільшенням частоти та ваги наночастинок Si3N4/TaC. Ці результати показали, що наноструктури PMMA/Si3N4/TaC можна вважати перспективними матеріалами для електроніки та електричних нанопристроїв.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

S.S. Al-Abbas, R.A. Ghazi, A.K. Al-shammari, N.R. Aldulaimi, A.R. Abdulridha, S.H. Al-Nesrawy, and E. Al-Bermany, “Influence of the polymer molecular weights on the electrical properties of Poly (vinyl alcohol)–Poly(ethylene glycols)/Graphene oxide nanocomposites,” Materials Today: Proceedings, 42, 2469-2474 (2021). https://doi.org/10.1016/j.matpr.2020.12.565

D.R. Paul, and L.M. Robeso, “Polymer nanotechnology: nanocomposites,” Polymer, 49(15), 3187-3204 (2008). https://doi.org/10.1016/j.polymer.2008.04.017

M.A. Habeeb, “Effect of rate of deposition on the optical parameters of GaAs films,” European Journal of Scientific Research, 57 (3), 478-484 (2011)

[4] G. Aras, E.L. Orhan, I.F. Selçuk, S.B. Ocak, and M. Ertuğrul, “Dielectric Properties of Al/Poly (methylmethacrylate) (PMMA)/p-Si Structures at Temperatures Below 300 K”, Procedia-Social and Behavioral Sciences, 95, 1740-1745 (2015). https://doi.org/10.1016/j.sbspro.2015.06.295

M.A. Habeeb, and W.K. Kadhim, “Study the optical properties of (PVA-PVAC-Ti) nanocomposites,” Journal of Engineering and Applied Sciences, 9(4), 109-113 (2014). https://doi.org/10.36478/jeasci.2014.109.113

K. Sardar, R. Bounds, M. Carravetta, G. Cutts, J.S. Hargreaves, A.L. Hector, and F. Wilson, “Sol–gel preparation of low oxygen content, high surface area silicon nitride and imidonitride materials,” Dalton Transactions, 45(13), 5765-5774 (2016). https://doi.org/10.1039/C5DT04961J

S.M. Mahdi, M.A. Habeeb, “Synthesis and augmented optical characteristics of PEO–PVA–SrTiO3–NiO hybrid nanocomposites for optoelectronics and antibacterial applications,” Optical and Quantum Electronics, 54(12), 854 (2022). https://doi.org/10.1007/s11082-022-04267-6

N. Manavizadeh, A. Khodayari, and E. Asl-Soleimani, “An Investigation of the Properties of Silicon Nitride (SiNx) Thin Films Prepared by RF Sputtering for Application in Solar Cell Technology,” edited by D.Y. Goswami, and Y. Zhao, in: Proceedings of ISES World Congress 2007, (Vol. I - Vol. V), (Springer, Berlin, Heidelberg, 2008). pp. 1120-1122. https://doi.org/10.1007/978-3-540-75997-3_220

S.M. Mahdi, and M.A. Habeeb, “Low-cost piezoelectric sensors and gamma ray attenuation fabricated from novel polymeric nanocomposites,” AIMS Materials Science, 10(2), 288-300 (2023). https://doi.org/10.3934/matersci.2023015

A.R. Farhadizadeh, and H. Ghomi, “Mechanical, structural, and thermodynamic properties of TaC-ZrC ultra-high temperature ceramics using first principle methods,” Materials Research Express, 7(3), 036502 (2020). https://doi.org/10.1088/2053-1591/ab79d2

M.A. Habeeb, and W.H. Rahdi, “Titanium carbide nanoparticles filled PVA‑PAAm nanocomposites, structural and electrical characteristics for application in energy storage,” Optical and Quantum Electronics, 55(4), 334 (2023). https://doi.org/10.1007/s11082-023-04639-6

F.A. Modine, R.W. Major, T.W. Haywood, G.R. Gruzalski, and D.Y. Smith, “Optical properties of tantalum carbide from the infrared to the near ultraviolet,” Physical Review B, 29(2), 836 (1984). https://doi.org/10.1103/PhysRevB.29.836

M.H. Dwech, M.A. Habeeb, and A.H. Mohammed, “Fabrication and Evaluation of Optical Characteristics of (PVA-MnO2–ZrO2) Nanocomposites for Nanodevices in Optics and Photonics,” Ukr. J. Phys. 67, (10), 757-762 (2022). https://doi.org/10.15407/ujpe67.10.757

O.E. Gouda, S.F. Mahmoud, A.A. El-Gendy, and A.S. Haiba, “Improving the Dielectric Properties of High Density Polyethylene by Incorporating Clay-Nano Filler,” Indonesian Journal of Electrical Engineering, 12(12), 7987-7995 (2014). https://ijeecs.iaescore.com/index.php/IJEECS/article/download/3909/2449

A.H. Hadi, and M.A. Habeeb, “Effect of CdS nanoparticles on the optical properties of (PVA-PVP) blends,” Journal of Mechanical Engineering Research and Developments,” 44(3), 265-274 (2021).

H. Shivashankar, A.M. Kevin, P.R. Sondar, M.H. Shrishail, and S.M. Kulkarni, “Study on low-frequency dielectric behavior of the carbon black/polymer nanocomposite”, J. Mater. Sci.: Mater Electron, 32, 28674–28686 (2021). https://doi.org/10.1007/s10854-021-07242-1

N. Hayder, M.A. Habeeb, and A. Hashim, “Structural, optical and dielectric properties of (PS-In2O3/ZnCoFe2O4) nanocomposites,” Egyptian Journal of Chemistry, 63, 577-592 (2020). https://doi.org/10.21608/ejchem.2019.14646.1887

T.S. Praveenkumar, T. Sankarappa, J.S. Ashwajeet, and R. Ramanna, “Dielectric and AC Conductivity Studies in PPy-Ag Nanocomposites” Journal of Polymers, 2015, 893148 (2015). https://doi.org/10.1155/2015/893148

Q.M. Jebur, A. Hashim, and M.A. Habeeb, “Structural, A.C electrical and optical properties of (polyvinyl alcohol-polyethylene oxide-aluminum oxide) nanocomposites for piezoelectric devices,” Egyptian Journal of Chemistry, 63, 719-734 (2020). https://dx.doi.org/10.21608/ejchem.2019.14847.1900

M. Rezvanpour, M. Hasanzadeh, D. Azizi, A. Rezvanpour, and M. Alizadeh, “Synthesis and characterization of micronanoencapsulated n-eicosane with PMMA shell as novel phase change materials for thermal energy storage,” Mater. Chem. Phys. 215, 299-304 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.044

M.A. Habeeb, A. Hashim, and N. Hayder, “Fabrication of (PS-Cr2O3/ZnCoFe2O4) nanocomposites and studying their dielectric and fluorescence properties for IR sensors,” Egyptian Journal of Chemistry, 63, 709-717 (2020). https://dx.doi.org/10.21608/ejchem.2019.13333.1832

J.B. Ramesh, and K.K. Vijaya, “Studies on structural and electrical properties of NaHCO3 doped PVA films for electrochemical cell applications”, Chemtech, 7, 171–180 (2014). https://sphinxsai.com/2015/ch_vol7_no1/2/(171-180)%20014.pdf

S.M. Mahdi, and M.A. Habeeb, “Evaluation of the influence of SrTiO3 and CoO nanofillers on the structural and electrical polymer blend characteristics for electronic devices,” Digest Journal of Nanomaterials and Biostructures, 17(3), 941-948 (2022). https://doi.org/10.15251/DJNB.2022.173.941

A. Paydayesh, A.A. Azar, and A.J. Arani, “Investigation the effect of Graphene on The Morphology, Mechanical and Thermal properties of PLA/PMMA Blends,” Ciência e Natura, 37, 15-22 (2015). https://doi.org/10.5902/2179460X20823

A.A. Mohammed, M.A. Habeeb, “Modification and Development of the Structural, Optical and Antibacterial Characteristics of PMMA/Si3N4/TaC Nanostructures,” Silicon, (2023). https://doi.org/10.1007/s12633-023-02426-2

S. Ahmad, and S.A. Agnihotry, “Synthesis and characterization of in situ prepared poly (methyl methacrylate) nanocomposites,” Bull. Mater. Sci. 30(1), 31-35 (2007). https://doi.org/10.1007/s12034-007-0006-9

N.K. Al‑Sharifi, and M.A. Habeeb, Synthesis and Exploring Structural and Optical Properties of Ternary PS/SiC/Sb2O3 Nanocomposites for Optoelectronic and Antimicrobial Applications, Silicon, (2023). https://doi.org/10.1007/s12633-023-02418-2

S. Ramesh, and L.C. Wen, “Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA–LiCF3SO3–SiO2,” Ionics (Kiel), 16, 255-262 (2010). https://doi.org/10.1007/s11581-009-0388-3

A. Hashim, M.A. Habeeb, and Q.M. Jebur, “Structural, dielectric and optical properties for (Polyvinyl alcohol-polyethylene oxide manganese oxide) nanocomposites,” Egyptian Journal of Chemistry, 63, 735-749 (2020). https://dx.doi.org/10.21608/ejchem.2019.14849.1901

M. Haghighi-Yazdi, and P. Lee-Sullivan, “FTIR analysis of a polycarbonate blend after hygrothermal aging,” Journal of Applied Polymer Science, 132(3), (2015). https://doi.org/10.1002/app.41316

Q.M. Jebur, A. Hashim, and M.A. Habeeb, “Fabrication, structural and optical properties for (Polyvinyl alcohol-polyethylene oxide iron oxide) nanocomposites,” Egyptian Jour of Chemistry, 63(2), 611-623 (2020). https://dx.doi.org/10.21608/ejchem.2019.10197.1669

A. Goswami, A.K. Bajpai, and B.K. Sinha, “Designing vanadium pentoxide-carboxymethyl cellulose/polyvinyl alcohol-based bionanocomposite films and study of their structure, topography, mechanical, electrical and optical behavior,” Polym. Bull. 75(2), 781-807 (2018). https://doi.org/10.1007/s00289-017-2067-2

M.A. Habeeb, and W.S. Mahdi, “Characterization of (CMC-PVP-Fe2O3) nanocomposites for gamma shielding application,” International Journal of Emerging Trends in Engineering Research, 7(9), 247-255 (2019). https://doi.org/10.30534/ijeter/2019/06792019

K. Rajesh, V. Crasta, K.N.B. Rithin, G. Shetty, and P.D. Rekha, “Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite,” J. Polym. Res. 26(4), 1-10 (2019). https://doi.org/10.1007/s10965-019-1762-0

M.A. Habeeb, R.S.A. Hamza, "Synthesis of (polymer blend –MgO) nanocomposites and studying electrical properties for piezoelectric application", Indonesian Journal of Electrical Engineering and Informatics, 6 (4), 428-435 (2018). https://doi.org/10.11591/ijeei.v6i1.511

G. Chakraborty, K. Gupta, D. Rana, and A.M. Kumar, “Dielectric relaxation in polyvinyl alcohol–polypyrrole–multiwall carbon nanotube composites below room temperature,” Advances in Natural Sciences, 4, 1-4 (2014).

M.A. Habeeb, R.S. Abdul Hamza, “Novel of (biopolymer blend-MgO) nanocomposites: Fabrication and characterization for humidity sensors,” Journal of Bionanoscience, 12 (3), 328-335 (2018). https://doi.org/10.1166/jbns.2018.1535

S. Ju, M. Chen, H. Zhang, and Z. Zhang, “Dielectric properties of nanosilica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced nanoparticles,” Journal of express Polymer Letters, 8(9), 682-691 (2014). https://doi.org/10.3144/expresspolymlett.2014.71

M.A. Habeeb, A. Hashim, and N. Hayder, "Structural and optical properties of novel (PS-Cr2O3/ZnCoFe2O4) nanocomposites for UV and microwave shielding,” Egyptian Journal of Chemistry, 63, 697-708 (2020). https://dx.doi.org/10.21608/ejchem.2019.12439.1774

O. Abdullah, G.M. Jamal, D.A. Tahir, and S.R. Saeed, “Electrical Characterization of Polyester Reinforced by Carbon Black Particles,” International Journal of Applied Physics and Mathematics, 1(2), 101-105 (2011). https://doi.org/10.7763/IJAPM.2011.V1.20

M.A. Habeeb, “Dielectric and optical properties of (PVAc-PEG-Ber) biocomposites,” Journal of Engineering and Applied Sciences, 9(4), 102-108 (2014). https://doi.org/10.36478/jeasci.2014.102.108

R.N. Bhagat, and V.S. Sangawar, “Synthesis and Structural Properties of Polystyrene Complexed with Cadmium Sulfide,” Int. J. Sci. Res. 6, 361-365 (2017). https://www.ijsr.net/get_abstract.php?paper_id=ART20177794

A.H. Hadi, M.A. Habeeb, “The dielectric properties of (PVA-PVP-CdS) nanocomposites for gamma shielding applications,” Journal of Physics: Conference Series, 1973(1), 012063 (2021). https://doi.org/10.1088/1742-6596/1973/1/012063

L. Kungumadevi, R. Sathyamoorthy, and A. Subbarayan, “AC conductivity and dielectric properties of thermally evaporated PbTe thin films,” Solid. State. Electron. 54(1), 58-62 (2010). https://doi.org/10.1016/j.sse.2009.09.023

M.A. Habeeb, and Z.S. Jaber, “Enhancement of Structural and Optical Properties of CMC/PAA Blend by Addition of Zirconium Carbide Nanoparticles for Optics and Photonics Applications,” East European Journal of Physics, 4, 176-182 (2022). https://doi.org/10.26565/2312-4334-2022-4-18

R. Dalven, and R. Gill, “Electrical properties of β-Ag2Te and β-Ag 2Se from 4.2°k to 300°K,” J. Appl. Phys. 38(2), 753-756 (1967). https://doi.org/10.1063/1.1709406

S.M. Mahdi, and M.A. Habeeb, “Fabrication and Tailored Structural and Dielectric characteristics of (SrTiO3/NiO) Nanostructure Doped (PEO/PVA) polymeric Blend for Electronics Fields,” Physics and Chemistry of Solid State, 23(4), 785-792 (2022). https://doi.org/10.15330/pcss.23.4.785-792

Y. Li, H. Porwal, Z. Huang, H. Zhang, E. Bilotti, and T. Peijs, “Enhanced Thermal and Electrical Properties of Polystyrene-Graphene Nanofibers via Electrospinning,” J. Nanomater. 2016, 4624976 (2016). https://doi.org/10.1155/2016/4624976

S.M. Mahdi, and M.A. Habeeb, “Tailoring the structural and optical features of (PEO–PVA)/(SrTiO3–CoO) polymeric nanocomposites for optical and biological applications,” Polymer Bulletin, (2023). https://doi.org/10.1007/s00289-023-04676-x

C.M. Mathew, K. Kesavan, and S. Rajendran, “Structural and Electrochemical Analysis of PMMA Based Gel Electrolyte Membranes,” Int. J. Electrochem. 2015, 1-7 (2015). https://doi.org/10.1155/2015/494308

Опубліковано
2023-06-02
Цитовано
Як цитувати
Мохаммед, А. А., & Хабіб, М. А. (2023). Вплив наноматеріалів Si3N4/TaC на структурні та електричні характеристики поліметилметакрилату для електротехніки та електроніки. Східно-європейський фізичний журнал, (2), 157-164. https://doi.org/10.26565/2312-4334-2023-2-15