Resolution of the Ultrasound Doppler System Using Coherent Plane-Wave Compounding Technique

Keywords: ultrasound imaging, Doppler spectra, synthetic aperture technique, coherent plane-wave compounding, continuum model of scattering, sensitivity function, point spread function, response formation

Abstract

In this work, in the process of plane-wave ultrasound probing from different angles the attainable spatial resolution was estimated on the basis of the previously developed theory of the Doppler response formation. In the theoretical calculations coherent compounding of the Doppler response signals was conducted over the period of changing the steering angles of probing. For this case an analytical expression for the ultrasound system sensitivity function over the field, which corresponds to the point spread function, is obtained. In the case of a rectangular weighting window for the response signals, the resolution is determined by the well-known sinc-function. The magnitude of the lateral resolution is inversely proportional to the range of the steering angles. It is shown that the theoretically estimated magnitude of the Doppler system lateral resolution, when using the technique of coherent plane-wave compounding, is in good agreement with the experimental data presented in literature.

Downloads

Download data is not yet available.

References

.Y. Lu, IEEE Trans. Ultrason., Ferroelec., Freq. Contr. 44(4), 839 (1997), https://doi.org/10.1109/58.655200

M. Tanter, J. Bercoff, L. Sandrin, and M. Fink, IEEE Trans. Ultrason. Ferroelectr.Freq. Contr.49(10), 1363 (2002), https://doi.org/10.1109/TUFFC.2002.1041078

G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, IEEE Trans. Ultrason.Ferroelectr.Freq.Contr. 56(3), 489 (2009), https://doi.org/10.1109/TUFFC.2009.1067

J.A. Jensen, S.I. Nikolov, K.L. Gammelmarkand, and M.H. Pedersen, Ultrasonics, 44(1), e5 (2006), https://doi.org/10.1016/j.ultras.2006.07.017

J.-l. Gennisson et al., IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 62(6), 1059 (2015), https://doi.org/10.1109/TUFFC.2014.006936

M. A. Lediju, G. E. Trahey, B. C. Byram and J. J. Dahl, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 58(7), 1377 (2011), http://doi.org/10.1109/TUFFC.2011.1957

Y.L. Li, J.J. Dahl, J. Acoust. Soc. Am. 141(3), 1582 (2017), https://doi.org/10.1121/1.4976960

J. Bercoff, G. Montaldo, T. Loupas, D. Savery, F. Meziere, M. Fink, and M. Tanter, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 58(1), 134 (2011), https://doi.org/10.1109/TUFFC.2011.1780

J. A. Jensen and N. Oddershede, IEEE Trans. Med. Imag. 25(12), 1637-1644(2006), https://doi.org/10.1109/TMI.2006.883087

Y.L. Li, J.J. Dahl, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 62(6), 1022 (2015), https://doi.org/10.1109/TUFFC.2014.006793

[11] J. Provost, C. Papadacci, C. Demene, J. Gennisson, M. Tanter and M. Pernot, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 62(8), 1467 (2015), https://doi.org/10.1109/TUFFC.2015.007032

J. Bercoff , M. Tanter, and M. Fink, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 51(4), 396 (2004), https://doi.org/10.1109/TUFFC.2004.1295425

C. Papadacci, M. Pernot, M. Couade, M. Fink and M. Tanter, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 61(2), 288 (2014), http://doi.org/10.1109/TUFFC.2014.6722614

J. Udesen, F. Gran, K. L. Hansen, J. A. Jensen, C. Thomsen and M. B. Nielsen, IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 55(8), 1729 (2008), https://doi.org/10.1109/TUFFC.2008.858

J. Jensen, M. B. Stuart, and J. A. Jensen, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 63(11), 1922 (2016), https://doi.org/10.1109/TUFFC.2016.2591980

B. Osmanski, M. Pernot, G. Montaldo, A. Bel, E. Messas and M. Tanter, IEEE Trans. Med. Imag., 31(8), 1661 (2012), http://doi.org/10.1109/TMI.2012.2203316

M. Tanter and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 61(1), 102 (2014), https://doi.org/10.1109/TUFFC.2014.6689779

S. I. Nikolov, B. G. Tomov and J. A. Jensen, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, pp. 1548-1552, https://doi.org/10.1109/ACSSC.2006.355018

R. Moshavegh, J. Jensen, C. A. Villagómez-Hoyos, M. B. Stuart, M. C. Hemmsen and J. A. Jensen, in Proceedings of SPIE Medical Imaging (San Diego, California, United States, 2016) pp. 97900Z-97900Z-9, https://doi.org/10.1117/12.2216506

J. Kortbek, J. A. Jensen and K. L. Gammelmark, Ultrasonics, 53(1), 1 (2013), https://doi.org/10.1016/j.ultras.2012.06.006

J. Cheng and J.Y. Lu, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 53(5), 880 (2006), https://doi.org/10.1109/TUFFC.2006.1632680

N. Oddershedeand J. A. Jensen, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 54(9), 1811 (2007), https://doi.org/10.1109/TUFFC.2007.465

B. Denarie et al., IEEE Trans. Med. Imaging 32(7), 1265 (2013), https://doi.org/10.1109/TMI.2013.2255310

Y. Tasinkevych, I. Trots, A. Nowicki, P.A. Lewin, Ultrasonics 52(2), 333 (2012), https://doi.org/10.1016/j.ultras.2011.09.003

S. Ricci, L. Bassi and P. Tortoli, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 61(2), 314 (2014), https://doi.org/10.1109/TUFFC.2014.6722616

Y. L, Li, D. Hyun, L. Abou-Elkacem, J. K. Willmann, J.J. Dahl, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 63(11), 1878 (2016), https://doi.org/10.1109/TUFFC.2016.2616112

I. K. Ekroll, A. Swillens, P. Segers, T. Dahl, H. Torp and L. Lovstakken, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 60(4), 727 (2013) https://doi.org/10.1109/TUFFC.2013.2621

D. Hyun, J.J. Dahl, J. Acoust. Soc. Am. 147(3), 1323 (2020), https://doi.org/10.1121/10.0000809

I.K. Ekroll, M.M. Voormolen, O.K.-V. Standal, J.M. Rau and L. Lovstakken, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 62(9), 1634 (2015), https://doi.org/10.1109/TUFFC.2015.007010

Y. Wang, C. Zheng, H. Peng and C. Zhang, IEEE Access 6, 36927 (2018), https://doi.org/10.1109/ACCESS.2018.2852641

S. Salles, F. Varray, Y. Bénane and O. Basset, 2016 IEEE International Ultrasonics Symposium (IUS), 2016, pp. 1-4, https://doi.org/10.1109/ULTSYM.2016.7728751

C. Zheng, Q. Zha, L. Zhang and H. Peng, IEEE Access 6, 495 (2018), https://doi.org/10.1109/ACCESS.2017.2768387

Y.M. Benane et al., 2017 IEEE International Ultrasonics Symposium (IUS), 2017, pp. 1-4, https://doi.org/10.1109/ULTSYM.2017.8091880

X. Yan, Y. Qi, Y. Wang, Y. Wang, Sensors 21, 394 (2021), https://doi.org/10.3390/s21020394

C. Golfetto, I. K. Ekroll, H. Torp, L. Løvstakken and J. Avdal, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 68(4), 1105 (2021), https://doi.org/10.1109/TUFFC.2020.3033719

S. Salles, H. Liebgott, O. Basset, C. Cachard, D. Vray and R. Lavarello, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 61(11), 1824 (2014), https://doi.org/10.1109/TUFFC.2014.006543

C.-C. Shen, Y.-C. Chu, Sensors 21, 4856 (2021), https://doi.org/10.3390/s21144856

E.A. Barannik, Ultrasonics 39(2), 311 (2001), https://doi.org/10.1016/S0041-624X(01)00059-2

I.V. Skresanova and E.A. Barannik, Ultrasonics 52(5), 676 (2012), https://doi.org/10.1016/j.ultras.2012.01.014

I.V. Sheina, O.B. Kiselov and E.A. Barannik, East Eur. J. Phys. 4, 5 (2020), https://doi.org/10.26565/2312-4334-2020-4-01

[41] P. J. Fish, in: Physical Principles of Medical Ultrasonics, editedby C.R. Hill (EllisHorwood, Chichester, 1986), pp. 338 376.

R.J. Dickinson, D.K. Nassiri, in: Physical principles of medical ultrasonics, edited by C. R. Hill, J. C. Bamber, G. R. terHaar (John Wiley & Sons, West Sussex, 2004), pp. 191–222.

E.A. Barannik and O.S. Matchenko, East Eur. J. Phys. 3(2) 61 (2016), https://doi.org/10.26565/2312-4334-2016-2-08. (in Russian)

W. Gilson andS. Orphanoudakis, in: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, NewOrleans, 1988), pp. 473-474, https://doi.org/10.1109/IEMBS.1988.94615

O.S. Matchenko and E.A. Barannik, Acoust. Phys. 63(5), 596 (2017), https://doi.org/10.1134/S106377101705008

R.S. Apte, D.S. Chen, N. Ferrara, Cell, 176(6), 1248-1264 (2019), https://doi.org/10.1016/j.cell.2019.01.021

J. Gallo, M. Raska, E. Kriegova, S. B. Goodman, Journal of Orthop. Translat., 10, 52 (2017), https://doi.org/10.1016/j.jot.2017.05.007

M. Jakovljevic, B.C. Yoon, L. Abou-Elkacem, D. Hyun, Y. Li, E. Rubesova, J.J. Dahl, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 68(1), 92 (2021), https://doi.org/10.1109/TUFFC.2020.3010341

Y.L. Li, D. Hyun, I. Durot, J.K. Willmann and J.J. Dahl, 2018 IEEE International Ultrasonics Symposium (IUS), 2018, pp. 1-9, https://doi.org/10.1109/ULTSYM.2018.8579726

Published
2022-03-17
Cited
How to Cite
Sheina, I. V., & Barannik, E. A. (2022). Resolution of the Ultrasound Doppler System Using Coherent Plane-Wave Compounding Technique. East European Journal of Physics, (1), 116-122. https://doi.org/10.26565/2312-4334-2022-1-16