Enhanced Third Generation Semiconductor Material-Based Solar Cell Efficiency by Piezo-Phototronic Effect

  • Michael Gyan aSchool of Physics, University of Electronic Science and Technology of China, Chengdu, China; University of Education, Winneba, Ghana https://orcid.org/0000-0001-6337-2205
  • Joseph Parbby bSchool of Material Science, University of Electronic Science and Technology of China, Chengdu, China; Koforidua, Technical University, Ghana
  • Francis E. Botchey Koforidua, Technical University, Ghana https://orcid.org/0000-0001-8327-4469
Keywords: Polarization charges, Piezophototronic effect, Solar cell, third-generation semiconductor, piezoelectric effect

Abstract

By applying the outward uniform strain on the non-centrosymmetric piezoelectric semiconductor, the polarization charges on the material surface are induced. Polarization charges are often generated within the crystals provided that the applied strain is non-uniform. The strain applied has an effect on electronic transport and can be utilized to modulate the properties of the material. The effect of multiway coupling between piezoelectricity, semiconductor transport properties, and photoexcitation results in piezo-phototronic effects. Recent studies have shown the piezoelectric and semiconductor properties of third-generation semiconductors have been used in photodetectors, LEDs, and nanogenerators. The third-generation piezoelectric semiconductor can be used in high-performance photovoltaic cells.  A third-generation piezo-phototronic solar cell material is theoretically explored in this manuscript on the basis of a GaN metal-semiconductor interaction. This study aims to determine the effects of piezoelectric polarization on the electrical performance characteristics of this solar cell material. Performance parameters such as Power Conversion Efficiency, Fill Factors, I-V Characteristics, Open Circuit Voltage, and Maximum Output Power have been evaluated.  The piezophototronic effect can enhance the open-circuit current voltage by 5.5 percent with an externally applied strain by 0.9 percent. The study will open a new window for the next generation of high-performance piezo-phototronic effects.

Downloads

Download data is not yet available.

References

Z.L. Wang, Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics, Nano Today, 5(6), 540, 2010, https://doi.org/10.1016/j.nantod.2010.10.008

Z.L. Wang, W. Wu, and C. Falconi, Piezotronics and piezo-phototronics with third-generation semiconductors, MRS Bulletin. 43, 922 (2018). https://doi.org/10.1557/mrs.2018.263

Y. Zhang, Y. Leng, M. Willatzen, and B. Huang, Theory of piezotronics and piezo-phototronics, MRS Bull., 43, 928 (2018). https://doi.org/10.1557/mrs.2018.297

X. Wen, W. Wu, C. Pan, Y. Hu, Q. Yang, and Z.L. Wang, Development and progress in piezotronics, Nano Energy, 14, 276 (2014). https://doi.org/10.1016/j.nanoen.2014.10.037

Z.L. Wang, The new field of nanopiezotronics, Mater. Today, 10(5), 20 (2007), https://doi.org/10.1016/S1369-7021(07)70076-7

J. Hao, and C.N. Xu, Piezophotonics: From fundamentals and materials to applications, MRS Bull., 43, 965 (2018). https://doi.org/10.1557/mrs.2018.296

M.C. Wong, L. Chen, G. Bai, L. B. Huang, and J. Hao, Temporal and Remote Tuning of Piezophotonic-Effect-Induced Luminescence and Color Gamut via Modulating Magnetic Field, Adv. Mater. 29(43), 1701945 (2017). https://doi.org/10.1002/adma.201701945

Z.L. Wang, Progress in piezotronics and piezo-phototronics, Advanced Materials. 24(34), 4632 (2012). https://doi.org/10.1002/adma.201104365

W. Wu and Z. L. Wang, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics, Nat. Rev. Mater. 1(7), 16031 (2016). https://doi.org/10.1038/natrevmats.2016.31

R. Bao, Y. Hu, Q. Yang, and C. Pan, Piezo-phototronic effect on optoelectronic nanodevices, MRS Bull., 43, 952 (2018). https://doi.org/10.1557/mrs.2018.295

Z.L. Wang, Nanopiezotronics, Adv. Mater. 19(6), 889 (2007). https://doi.org/10.1002/adma.200602918

C. Pan, J. Zhai, and Z.L. Wang, Piezotronics and Piezo-phototronics of Third Generation Semiconductor Nanowires, Chemical Reviews. 119(15), 9303 (2019). https://doi.org/10.1021/acs.chemrev.8b00599

W. Wu, and Z.L. Wang, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics, Nature Reviews Materials. 1, 16031 (2016). https://doi.org/10.1038/natrevmats.2016.31

Z.L. Wang, J. Zhai, and L. Zhu, Piezotronic and piezo-phototronic devices based on the third generation semiconductors, Chinese Sci. Bull. 65(25), 2664 (2020). https://doi.org/10.1360/tb-2019-0713

W. Sha, J. Zhang, S. Tan, X. Luo, and W. Hu, III-nitride piezotronic/piezo-phototronic materials and devices, Journal of Physics D: Applied Physics. 52, 213003 (2019). https://doi.org/10.1088/1361-6463/ab04d6

J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, and J. Rebollo, A survey of wide bandgap power semiconductor devices, IEEE Trans. Power Electron. 29(5), 2155 (2014). https://doi.org/10.1109/TPEL.2013.2268900

X. Wang et al., Piezotronic Effect Modulated Heterojunction Electron Gas in AlGaN/AlN/GaN Heterostructure Microwire, Adv. Mater. 28(33), 7234 (2016). https://doi.org/10.1002/adma.201601721

J. Fu, H. Zong, X. Hu, and H. Zhang, Study on ultra-high sensitivity piezoelectric effect of GaN micro/nano columns, Nano Converg. 6, 33 (2019). https://doi.org/10.1186/s40580-019-0203-4

G. Michael et al., High-performance piezo-phototronic multijunction solar cells based on single-type two-dimensional materials, Nano Energy, vol. 76, Oct. (2020). https://doi.org/10.1016/j.nanoen.2020.105091

Z. Dongqi, Z. Zhao, R. Huang, J. Nie, L. Li, and Y. Zhang, High-performance piezo-phototronic solar cell based on two-dimensional materials, Nano Energy, 32, 448 (2017). https://doi.org/10.1016/j.nanoen.2017.01.005

J. Sirohi and I. Chopra, Fundamental Understanding of Piezoelectric Strain Sensors, J. Intell. Mater. Syst. Struct. 11(4), 246 (2000). https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0

S.M. Sze, and K.K. Ng, Physics of Semiconductor Devices. 2006.

P. Paufler, Fundamentals of Piezoelectricity, Zeitschrift für Krist. (1992). https://doi.org/10.1524/zkri.1992.199.1-2.158

G.A. Maugin, and A.C. Eringen, Continuum Mechanics of Electromagnetic Solids, J. Appl. Mech. 56(4), 986 (1989). https://doi.org/10.1115/1.3176205

Y. Zhang, Y. Liu, and Z.L. Wang, Fundamental theory of piezotronics, Adv. Mater. 23(27), 3004 (2011). https://doi.org/10.1002/adma.201100906

K. Gu, D. Zheng, L. Li, and Y. Zhang, High-efficiency and stable piezo-phototronic organic perovskite solar cell, RSC Adv. 8(16), 8694 (2018). https://doi.org/10.1039/C8RA00520F

Y. Wang, D. Zheng, L. Li, and Y. Zhang, Enhanced Efficiency of Flexible GaN/Perovskite Solar Cells Based on the Piezo-Phototronic Effect, ACS Appl. Energy Mater. 1(7), 3063 (2018). https://doi.org/10.1021/acsaem.8b00713

G. Michael, G. Hu, D. Zheng, and Y. Zhang, Piezo-phototronic solar cell based on 2D monochalcogenides materials, J. Phys. D. Appl. Phys. 52(20), 204001 (2019). https://doi.org/10.1088/1361-6463/ab0ac4

W. Liu, A. Zhang, Y. Zhang, and Z. L. Wang, Density functional studies on wurtzite piezotronic transistors: Influence of different semiconductors and metals on piezoelectric charge distribution and Schottky barrier, Nanotechnology, 27, 205204 (2016). https://doi.org/10.1088/0957-4484/27/20/205204

F. Schäffler, in Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe, edited by M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur, (John Wiley Sons Inc, New York, 2001), pp. 149-188.

S.P. Wan, J.B. Xia, and K. Chang, Effects of piezoelectricity and spontaneous polarization on electronic and optical properties of wurtzite III-V nitride quantum wells, J. Appl. Phys. 90, 6210 (2001). https://doi.org/10.1063/1.1413714

C-T. Huang, J. Song, W-F. Lee, Y. Ding, Z. Gao, Y. Hao, L.-J. Chen, and Z.L. Wang, GaN nanowire arrays for high-output nanogenerators, J. Am. Chem. Soc. 132(13), 4766 (2010). https://doi.org/10.1021/ja909863a

G. Hua, W. Guo, R. Yu, X. Yang, R. Zhou, C. Pan, and Z.L. Wang, Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect, Nano Energy, 23, 27 (2016). https://doi.org/https://doi.org/10.1016/j.nanoen.2016.02.057

J. Sun et al., Piezo-phototronic Effect Enhanced Efficient Flexible Perovskite Solar Cells, ACS Nano, 13(4), 4507 (2019). https://doi.org/10.1021/acsnano.9b00125

W. Liu, A. Zhang, Y. Zhang, and Z.L. Wang, First principle simulations of piezotronic transistors, Nano Energy, 14, 355 (2015). https://doi.org/10.1016/j.nanoen.2014.10.014

N. Suvansinpan, F. Hussain, G. Zhang, C.H. Chiu, Y. Cai, and Y.W. Zhang, Substitutionally doped phosphorene: Electronic properties and gas sensing, Nanotechnology, 27, 065708 (2016). https://doi.org/10.1088/0957-4484/27/6/065708

F. Bernardini, V. Fiorentini, and D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Phys. Rev. B - Condens. Matter Mater. Phys. 56, R10024(R) (1997). https://doi.org/10.1103/PhysRevB.56.R10024

A.T. Collins, E.C. Lightowlers, and P.J. Dean, Lattice vibration spectra of aluminum nitride, Phys. Rev. 158, 833 (1967). https://doi.org/10.1103/PhysRev.158.833

Y. Zhang, J. Nie, and L. Li, Piezotronic effect on the luminescence of quantum dots for micro/nano-newton force measurement, Nano Res. 11, 1977 (2018). https://doi.org/10.1007/s12274-017-1814-x

Y. Zhang, Y. Yang, and Z. Wang, Piezo-phototronics effect on nano/microwire solar cells, Energy Environ. Sci. 5, 6850 (2012). https://doi.org/10.1039/C2EE00057A

D. Berlincourt, H. Jaffe, and L.R. Shiozawa, Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium, Phys. Rev. 129, 1009 (1963). https://doi.org/10.1103/PhysRev.129.1009

P.E. Lippens and M. Lannoo, Calculation of the band gap for small CdS and ZnS crystallites, Phys. Rev. B, 39, 10935 (1989). https://doi.org/10.1103/PhysRevB.39.10935

T. Wakaoka et al., Confined synthesis of CdSe quantum dots in the pores of metal-organic frameworks, J. Mater. Chem. C, 2, 7173 (2014). https://doi.org/10.1039/c4tc01136h

I. Strzalkowski, S. Joshi, and C.R. Crowell, Dielectric constant and its temperature dependence for GaAs, CdTe, and ZnSe, Appl. Phys. Lett. 28, 350 (1976). https://doi.org/10.1063/1.88755

G.A. Samara, Temperature and pressure dependences of the dielectric constants of semiconductors, Phys. Rev. B, 27, 3494 (1983). https://doi.org/10.1103/PhysRevB.27.3494

Published
2022-03-17
Cited
How to Cite
Gyan, M., Parbby, J., & Botchey, F. E. (2022). Enhanced Third Generation Semiconductor Material-Based Solar Cell Efficiency by Piezo-Phototronic Effect. East European Journal of Physics, (1), 70-76. https://doi.org/10.26565/2312-4334-2022-1-10