Огляд електронних оптичні та транспортних властивостей напівгейслерового сплаву: NiVSi

  • Джелті Радуан Лабораторія технологій та властивостей твердих речовин, Університет Мостаганем (UMAB) – Алжир https://orcid.org/0000-0002-0762-5818
  • Бесбес Анісса Лабораторія EA2M, Університет Мостаганем (UMAB) – Алжир
  • Бестані Бенауда Лабораторія EA2M, Університет Мостаганем (UMAB) – Алжир https://orcid.org/0000-0002-1104-0900
Ключові слова: DFT, підхід mBJ, напівметалевий, ультрафіолетовий, фактор якості

Анотація

Теоретично досліджено напівгейслеровий сплав NiVSi за допомогою розрахунків за першопринципами на основі теорії функціоналу щільності (DFT). Для кращого опису електронних властивостей обмінно-кореляційного потенціалу використовується потенціал TB-mBJ. Структурні, електронні, магнітні, оптичні та термоелектричні властивості були розраховані за допомогою програмного забезпечення WIEN2k. Знайдені негативні енергії когезії та енергії формування показують, що NiVSi є термодинамічно стабільним. З електронної точки зору NiVSi є напівметалом з непрямою забороненою зоною 0,73 еВ у каналі зі спіном вниз, тоді як канал зі спіном вгору є металевим. Загальний магнітний момент дорівнює 1. Оптично, отриманий високий коефіцієнт поглинання в ультрафіолетовому діапазоні довжин хвиль робить NiVSi корисним як ефективний поглинач ультрафіолетового випромінювання. Термоелектрично було отримано високу якість в області p- і n‑типу, що робить цю сполуку функціональною для термоелектричних застосувань. Генерація повністю спін-поляризованого струму робить цю сполуку непридатною для застосування спінтронів при кімнатній температурі, легування може бути задовільним рішенням для покращення цієї властивості.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

R. De Groot, F. Mueller, P. Van Engen, and K. Buschow, New class of materials: half-metallic ferromagnets, Phys. Rev. Lett. 50(25), 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024

M. Zhang, X. Dai, H. Hu, G. Liu, Y. Cui, Z. Liu, J. Chen, J. Wang, and G. Wu, Search for new half-metallic ferromagnets in semi-Heusler alloys NiCrM (M = P, As, Sb, S, Se and Te), J. Phys.: Condens. Matter. 15, 7891 (2003). https://doi.org/10.1088/0953-8984/15/46/008

H. Luo, Z. Zhu, G. Liu, S. Xu, G. Wu, H. Liu, J. Qu, and Y. Li, Ab-initio investigation of electronic properties and magnetism of half-Heusler alloys XCrAl (X = Fe, Co, Ni) and NiCrZ (Z = Al, Ga, In), Physica B, 403, 200 (2008). https://doi.org/10.1016/j.physb.2007.08.214

S.H. Wang, H.M. Cheng, R.J. Wu, and W.H. Chao, Structural and thermoelectric properties of HfNiSn half-Heusler thin films, Thin Solid Films, 518(21), 5901 (2010). https://doi.org/10.1016/j.tsf.2010.05.080

L. Huang, R. He, S. Chen, H. Zhang, K. Dahal, H. Zhou, H. Wang, Q. Zhang, and Z. Ren, A new n-type half-Heusler thermoelectric material NbCoSb, Materials Research Bulletin, 70, 773 (2015). https://doi.org/10.1016/j.materresbull.2015.06.022

S.V. Pedersen, J.R. Croteau, N. Kempf, Y. Zhang, D.P. Butt, and B.J. Jaques, Novel synthesis and processing effects on the figure of merit for NbCoSn, NbFeSb, and ZrNiSn based half-Heusler thermoelectrics, Journal of Solid State Chemistry, 285, 121203 (2020). https://doi.org/10.1016/j.jssc.2020.121203

A. Saini, S. Nag, R. Singh, and R. Kumar, Enhacement in the thermoelectric performance of half-Heusler alloy LiScGe under hydrostatic pressure, Journal of Alloys and Compounds, 818, 152929 (2020). http://dx.doi.org/10.1016/j.jallcom.2019.152929

S. Kacimi, H. Mehnane, and A. Zaoui, I–II–V and I–III–IV half-Heusler compounds for optoelectronic applications: Comparative ab initio study, Journal of Alloys and Compounds, 587, 451 (2014). https://doi.org/10.1016/j.jallcom.2013.10.046

F. Parvin, M.A. Hossain, I. Ahmed, K. Akter, and A.K.M.A. Islam, First-principles calculations to investigate mechanical, optoelectronic and thermoelectric properties of half-Heusler p-type semiconductor BaAgP, Results in Physics, 23, 104068 (2021). https://doi.org/10.1016/j.rinp.2021.104068

D. Kieven, R. Klenk, S. Naghavi, C. Felser, and T. Gruhn, I-II-V half-Heusler compounds for optoelectronics: Ab initio calculations, Phys. Rev. B, 81, 075208 (2010). https://doi.org/10.1103/PhysRevB.81.075208

T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, Thermoelectric Properties of (Ti, Zr, Hf) CoSb Type Half-Heusler Compounds, Materials Transactions, 46, 1481 (2005). https://doi.org/10.2320/matertrans.46.1481

A. Page, P.F.P. Poudeu, and C. Uher, A first-principles approach to half-Heusler thermoelectrics: Accelerated prediction and understanding of material properties, Journal of Materiomics, 2, 104 (2016). https://doi.org/10.1016/j.jmat.2016.04.006

K. Xia, C. Hu, C. Fu, X. Zhao, and T. Zhu, Half-Heusler thermoelectric materials, Appl. Phys. Lett. 118, 140503 (2021). https://doi.org/10.1063/5.0043552

R. Majumder, and Md.M. Hossain, First-principles study of structural, electronic, elastic, thermodynamic and optical properties of topological superconductor LuPtBi. Comput. Condens. Matter, 21, (2019) e00402. https://doi.org/10.1016/j.cocom.2019.e00402

A. Zakutayev, X. Zhang, Theoretical Prediction and Experimental Realization of New Stable Inorganic Materials Using the Inverse Design Approach, J. Am. Chem. Soc. 135(27), 10048 (2013). https://doi.org/10.1021/ja311599g

R. Ahmad, and N. Mehmood, Theoretical investigations of properties of new half-Heusler compounds NiFeZ (Z = Si, Ge), J. Supercond. Nov. Magn. 31(19), 1751 (2018). https://doi.org/10.1007/s10948-017-4378-9

Hai-Long Sun, Chuan-Lu Yang, Mei-Shan Wang, and Xiao-Guang Ma, Remarkably High Thermoelectric Efficiencies of the Half-Heusler Compounds BXGa (X = Be, Mg, and Ca), ACS Appl. Mater. Interfaces, 12, 5838 (2020). https://doi.org/10.1021/acsami.9b19198

Z. Wendan, L. Yong, L. Yunsheng, W. Jiahua, H. Zhiling, and S. Xiaohong, Structural and thermoelectric properties of Zr-doped TiPdSn half-Heusler compound by first-principles calculations. Chem. Phys. Lett. 741, 137055 (2000). https://doi.org/10.1016/j.cplett.2019.137055

S.M. Saini, Structural, electronic and thermoelectric performance of narrow gap LuNiSb half Heusler compound: Potential thermoelectric material, Physica B, 610, 412823 (2021). https://doi.org/10.1016/j.physb.2021.412823

A.Arunachalam, R. Rajeswarapalanichamy, and K. Iyakutti, Half metallic ferromagnetism in Ni based half Heusler alloys, Computational Materials Science, 148, 87 (2018). https://doi.org/10.1016/j.commatsci.2018.02.026

H B Ozisik et al., Ab-initio calculations on half-Heusler NiXSn (X =Zr, Hf) compounds: electronic and optical properties under pressure, Indian J. Phys. 91(7), 773 (2017). https://doi.org/10.1007/s12648-017-0971-9

P. Hermet et al., Thermal dependence of the mechanical properties of NiTiSn using first-principles calculations and high-pressure X-ray diffraction, Journal of Alloys and Compounds, 823, 153611 (2020). https://doi.org/10.1016/j.jallcom.2019.153611

F. Tran, and P. Blaha, Accurate Band Gaps of Semiconductors and Insulators with a Semi local Exchange-Correlation potential, Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (John Wiley & Sons, 2009). https://doi.org/10.1002/9780470744383

J.Sun, H.T.Wang and N.B.Ming, Optical properties of heterodiamond B2CN using first-principles calculations, Appl. Phys. Lett. 84, 4544 (2004). https://doi.org/10.1063/1.1758781

J.M. Hu, S.P. Huang, Z. Xie, H. Hu, and W.D. Cheng, First-principles study of the elastic and optical properties of the pseudocubic Si3As4, Ge3As4 and Sn3As4, J. Phys.: Condens. Matter, 19, 496215 (2007). https://doi.org/10.1088/0953-8984/19/49/496215

G.K.H. Madsen, D.J. Singh, and BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun. 175, 67 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

E. Zhao, and Z. Wu, Electronic and mechanical properties of 5d transition metal mononitrides via first principles, J. Solid State Chem. 181, 2814 (2008). https://doi.org/10.1016/j.jssc.2008.07.022

J.S. Zhao, Q. Gao, L. Li, H.H. Xie, X.R. Hu, C.L. Xu, and J.B. Deng, First-principles study of the structure, electronic, magnetic and elastic properties of half-Heusler compounds LiXGe (X = Ca, Sr and Ba), Intermetallics, 89 65 (2017). https://doi.org/10.1016/j.intermet.2017.04.011

Crystalmaker software, http://www.crystalmaker.com

N. Mehmood, R. Ahmad, and G. Murtaza, Ab initio investigations of structural, elastic, mechanical, electronic, magnetic, and optical properties of half-Heusler compounds RhCrZ (Z = Si, Ge), J. Supercond. Nov. Magn. 30, 2481 (2017). https://doi.org/10.1007/S10948-017-4051-3

J. Ma et al., Computational investigation of half-Heusler compounds for spintronic applications, Phys. Rev. B, 95, 024411 (2017).

B. Amin, I. Ahmad, M. Maqbool, S. Goumri-Said, and R. Ahmad, Ab initio study of the bandgap engineering of Al1−xGaxN for optoelectronic applications, J. Appl. Phys. 109, 023109 (2011). https://doi.org/10.1063/1.3531996

G. Marius, The Physics of Semiconductors: Kramers-kronig Relations, (Springer, Berlin Heidelberg, 2010). pp. 775–776. ISBN-13 978-3-540-25370-9

M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B, 73, 045112 (2006). https://doi.org/10.1103/PhysRevB.73.045112

C. Ambrosch-Draxl, J.O. Sofo, Linear optical properties of solids within the full potential linearized augmented planewave method. Comput. Phys. Commun 175, 1 (2006). https://doi.org/10.1016/j.cpc.2006.03.005

M. Irfan, M.A. Kamran, S. Azam, M.W. Iqbal, T. Alharbi, A. Majid, S.B. Omran, R. Khenata, A. Bouhemadou, and X. Wang, Electronic structure and optical properties of TaNO: an ab initio study, J. Mol. Graph. Model. 92, 296 (2019). https://doi.org/10.1016/j.jmgm.2019.08.006

D.R. Penn, Wave-Number-Dependent Dielectric Function of Semiconductors, Phys. Rev. 128, 2093 (1962). https://doi.org/10.1103/PhysRev.128.2093

A. Benzina, First-principles calculation of structural, optoelectronic properties of the cubic AlxGayIn1-x-yN quaternary alloys matching on AlN substrate, within modified Becke-Johnson (mBJ) exchange potential, Optik, 127, 11577 (2016). https://doi.org/10.1016/j.ijleo.2016.09.014

S. Samanta, and S.M. Saini, First-principle calculations of electronic and optical properties of CdCr2Te4 spinel: use of mBJ + U potential in narrow band gap semiconductors, Indian J. Phys. 93(3), 335 (2019). https://doi.org/10.1007/s12648-018-1298-x

N. Yaqoob, et al, Structural, electronic, magnetic, optical and thermoelectric response of half-metallic AMnTe2 (A = Li, Na, K): An ab-initio calculations, Physica B: Condensed Matter, 574, 311656 (2019). https://doi.org/10.1016/j.physb.2019.08.033

D. Vasileska, H.R. Khan, S.S. Ahmed, C. Ringhofer, and C. Heitzinger, Quantum and Coulomb Effects in Nano Devices, International Journal of Nanoscience, 4, 305 (2005). https://doi.org/10.1142/S0219581X05003164

A. Reshak, Thermoelectric properties of the spin-polarized half-metallic ferromagnetic CsTe and RbSe compounds, RSC Adv. 6, 98197 (2016). https://doi.org/10.1039/C6RA22758A

V.F. Gantmakher, The experimental study of electron-phonon scattering in metals, Reports on progress in physics, 37(3), 317 (1974). https://doi.org/10.1088/0034-4885/37/3/001

C. Lee et al., Density functional theory investigation of the electronic structure and thermoelectric properties of layered MoS2, MoSe2 and their mixed-layer compound, J. Solid State Chem. 211, 113 (2014). https://doi.org/10.1016/j.jssc.2013.12.012

T.M. Tritt, Thermoelectric phenomena, materials, and applications, Annu. Rev. Mater. Res. 41, 433 (2011). https://doi.org/10.1146/annurev-matsci-062910-100453

A. Besbes et al. First-principles study of structural, electronic, thermodynamic, and thermoelectric properties of a new ternary half-Heusler alloy PdZrGe, Chinese Journal of Physics, 56, 2926 (2018). https://doi.org/10.1016/j.cjph.2018.09.027

S.Yousuf, D.C. Gupta, Unravelling the magnetism, high spin polarization and thermoelectric efficiency of ZrFeSi half-Heusler, physica B: condensed matter, 534, 5 (2018). https://doi.org/10.1016/j.physb.2018.01.011

S. Parsamehr et al., Half Metallic, Thermoelectric, Optical, and Thermodynamic Phase Stability of RbBaB (001) Film: A DFT Study, International Journal of Thermophysics, 40, 64 (2019). https://doi.org/10.1007/s10765-019-2531-3

S. Singh, and D.C. Gupta, Investigation of Electronic, Magnetic, Thermodynamic, and Thermoelectric Properties of Half-Metallic XLiSn (X = Ce, Nd) Alloys, Journal of Superconductivity and Novel Magnetism, 32, 2009 (2019). https://doi.org/10.1007/s10948-018-4907-1

A. Besbes et al., Optical and thermoelectric response of RhTiSb half-Heusler, International Journal of Modern Physics B, 33(22) 1950247 (2019). https://doi.org/10.1142/S0217979219502473

Опубліковано
2022-03-17
Цитовано
Як цитувати
Радуан, Д., Анісса, Б., & Бенауда, Б. (2022). Огляд електронних оптичні та транспортних властивостей напівгейслерового сплаву: NiVSi. Східно-європейський фізичний журнал, (1), 16-25. https://doi.org/10.26565/2312-4334-2022-1-03