Дослідження безсвинцевих галідів у подвійних перовскітах на основі натрію Cs2NaBiX6 (X = Cl, Br, I): неемперічне (Ab Initio) дослідження
Анотація
Незважаючи на значні переваги перовскітних оптоелектронних пристроїв на основі свинцю, їх нестабільний характер та токсичність все ще є перешкодою для практичного застосування. Подвійний перовскіт став кандидатом для застосування в оптоелектроніці та фотоелектричній техниці через його нетоксичний характер та стабільність у повітрі. Ми представили неемперічне (ab-initio) дослідження безсвинцевих галогенідних подвійних перовскітів Cs2NaBiX6(X=Cl, Br, I). Розрахунок проводиться за допомогою методу FP-LAPW в рамках DFT в межах потенціалу PBE з використанням коду WIEN2k. Були проаналізовані структурні, електронні та оптичні властивості Cs2NaBiI6, Cs2NaBiBr6 та Cs2NaBiCl6. Ми отримали ширину енергетичної щілини 2,0, 2,6 та 3,7 для Cs2NaBiI6, Cs2NaBiBr6 та Cs2NaBiCl6 відповідно. Протягом усього дослідження ми показали, що зміна структури подвійного перовскіту в межах Cs2NaBiX6 (X = Cl, Br, I), що призводить до зміни ширини енергетичної щілини, щільності станів та оптичних властивостей, таких як коефіцієнт згасання, спектри поглинання, оптична відбивна здатність, діелектричний коефіцієнт, показник заломлення свідчить про різноманітність цього матеріалу для оптоелектронних пристроїв та інших цілей.
Завантаження
Посилання
H. Tang, S. He, and C. Peng, Nanoscale Research Letters, 12, 410 (2017), https://doi.org/10.1186/s11671-017-2187-5
F. Giustino, and H.J. Snaith, ACS Energy Letters, 1, 1233 (2016), https://doi.org/10.1021/acsenergylett.6b00499
Y. Dang, C. Zhong, G. Zhang, D. Ju, L. Wang, S. Xia, H. Xia, and X. Tao, Chem. Mater. 28, 6968 (2016), https://doi.org/10.1021/acs.chemmater.6b02653
C. Lee, J. Hong, A. Stroppa, M.H. Whangbo, and J.H. Shim, RSC Adv. 5, 78701 (2015), https://doi.org/10.1039/C5RA12536G
T. Zhao, W. Shi, J. Xi, D. Wang, and Z. Shuai, Sci. Rep. 7, 19968 (2016), https://doi.org/10.1038/srep19968
H.S. Jung, and N.G. Park, Small, 11, 10 (2015), https://doi.org/10.1002/smll.201402767
A.H. Slavney, R.W. Smaha, I.C. Smith, A. Jaffe, D. Umeyama, and H.I. Karunadasa, Inorg. Chem. 56, 46 (2017), https://doi.org/10.1021/acs.inorgchem.6b01336
F. Giustino, and H.J. Snaith, ACS Energy Lett. 1, 1233 (2016), https://doi.org/10.1021/acsenergylett.6b00499
J. Cheng, and Z.Q. Yang, Physica Status Solidi B, 243, 1151 (2006), https://doi.org/10.1002/pssb.200541381
H. Wu, Phys. Rev. B, 64, 125126 (2001), https://doi.org/10.1103/PhysRevB.64.125126
Y. Shimakawa, M. Azuma, and N. Ichikawa, Materials, 4, 153 (2011), https://doi.org/10.3390/ma4010153
P. Blaha, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, an augmented plane wave plus local orbitals program for calculating crystal properties (Vienna, Austria) 2008.
P. Hohenberg, and W. Kohn, Phys. Rev. 136, B864 (1964), https://doi.org/10.1103/PhysRev.136.B864
W. Kohn, and L.J. Sham, Phys. Rev. 140, A1133 (1965), https://doi.org/10.1103/PhysRev.140.A1133
J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008), https://doi.org/10.1103/PhysRevLett.100.136406
J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), https://doi.org/10.1103/PhysRevLett.77.3865
H.J. Monkhorst, and J.D. Pack, Phys. Rev. B, 13, 5188 (1976), https://doi.org/10.1103/PhysRevB.13.5188
F. Birch, Physical Review, 71, 809 (1947), https://doi.org/10.1103/PhysRev.71.809
F.D. Murnaghan, Proc. Natl. Acad. Sci. USA, 30, 244 (1994), https://dx.doi.org/10.1073%2Fpnas.30.9.244
E.E. Eyi, and S. Cabuk, Philosophical Magazine, 90, 2965 (2010), https://doi.org/10.1080/14786431003752159
K.E. Babu, N. Murali, K.V. Babu, P.T. Shibeshi, and V. Veeraiah, Acta Physica Polonica A, 125, 1179 (2014), http://dx.doi.org/10.12693/APhysPolA.125.1179
M.L. Ali, and M.Z. Rahaman, Int. J. Mater. Sci. Appl. 5, (2016) 202-206, https://doi.org/10.11648/j.ijmsa.20160505.14
S. Choudhary, A. Shukla J. Chaudhary, and A.S. Verma, Int. J. Energy Res. 44, 11614 (2020), https://doi.org/10.1002/er.5786
R. Gautam, P. Singh, S. Sharma, S. Kumari, and A.S. Verma, Superlattice Microst. 85, 859 (2015), https://doi.org/10.1016/j.spmi.2015.07.014
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).