Дослідження електронних термоелектричних властивостей ZrCoBi легованого (P, As, Sb)
Анотація
Протягом останнього десятиріччя напів-Гайслерові сполуки (HH) займають важливе місце в галузі досліджень фізики конденсованої речовини. Численність заміщень перехідних елементів на кристалографічних ділянках X, Y та (III-V) елементів на Z-ділянках надає сплавам напів-Гайслера (HH) безліч надзвичайних властивостей. У цьому дослідженні ми вивчали структурні, електронні та термоелектричні властивості ZrCoBi0,75Z0,25 (Z = P, As, Sb), використовуючи теорію функціоналу щільності (DFT). Розрахунки проводились паралельно з використанням метода повного потенціалу лінеаризованої розширеної плоскої хвилі (FP-LAPW), який був реалізований в коді WIEN2k. Термоелектричні властивості були прогнозовані за допомогою напівкласичної теорії транспорту Больцмана, яка була реалізована в коді Больцтрапа. Отримані результати для зонної структури та щільностей станів підтверджують напівпровідникову (SC) природу трьох сполук із непрямим проміжком енергетичної зони, який становить близько 1 еВ. Основні термоелектричні параметри, такі як коефіцієнт Зеебека, теплопровідність, електропровідність та порівняльний показник якості, були оцінені для температур від нуля до 1200К. Позитивні значення коефіцієнта Зеебека (S) підтверджують, що ZrCoBi0.75Z0.25 (x = 0 та 0,25) є SC типу p. При температурі навколишнього середовища ZrCoBi0.75P0,25 демонструє значну величину (S), яка складає 289 µV/K, що означає покращення на 22% порівняно з нелегованим ZrCoBi, а також демонструє зменшення теплопровідності на 54% (k/τ). Нелегований ZrCoBi має найнижче значення ZT при будь-яких температурах, і, при заміщенні атома вісмуту одним із sp-елементів (P, As, Sb), одночасне покращення k/τ та S призводить до досягнення максимальних значень порівняльного показника якості (ZT) ~ 0,84, отриманого при 1200 К для трьох легованих сполук.
Завантаження
Посилання
T. Zhu, C. Fu, H. Xie, Y. Liu, and X. Zhao, Adv. Energy Mater. 5, 1-13 (2015), https://doi.org/10.1002/aenm.201500588.
I.P. Ezekiel, and T. Moyo, Journal of Alloys and Compounds, 749, 672-680 (2018), https://doi.org/10.1016/j.jallcom.2018.03.349.
A. Karati, S. Mukherjee, R.C. Mallik, R, Shabadi, B.S. Murty, and U.V. Varadaraju, Materialia, 7, 100410 (2019), https://doi.org/10.1016/j.mtla.2019.100410.
A. Bandyopadhyaya, S.K. Neogia, A. Paul, C. Meneghini, I. Dasgupta, and S. Ray, Journal of Alloys and Compounds, 764, 656-664 (2018), https://doi.org/10.1016/j.jallcom.2018.06.065.
T.C. Chibueze, A.T. Raji, and C.M.I. Okoye, Chemical Physics, 530, 110635 (2020), https://doi.org/10.1016/j.chemphys.2019.110635.
Z. Wendan, L. Yong, L. Yunsheng, W. Jiahua, H. Zhiling, and S. Xiaohong, Chemical Physics Letters, 741, 137055 (2020), https://doi.org/10.1016/j.cplett.2019.137055.
J.Shen, L. Fan, C. Hu, T. Zhu, J. Xin, T. Fu, D. Zhao, and X. Zhao, Materials Today Physics, 8, 62-70 (2019), https://doi.org/10.1016/j.mtphys.2019.01.004.
A. Bhardwaj, and D.K. Misra, J. Mater. Chem. A, 2, 20980-20989 (2014), https://doi.org/10.1039/C4TA04661G.
E. Lkhagvasuren, S. Ouardi, G.H. Fecher, G. Auffermann, G. Kreiner, W. Schnelle, and C. Felser, Optimized thermoelectric performance of the n-type half-Heusler material TiNiSn by substitution and addition of Mn, AIP Advances, 7, 045010 (2017), https://doi.org/10.1063/1.4979816.
S. Chen, and Z. Ren, Mater. Today, 16(10), 387–395 (2013), https://doi.org/10.1016/j.mattod.2013.09.015.
S.J. Poon, D. Wu, S. Zhu, W. Xie, T.M. Tritt, P. Thomas, and R. Venkatasubramanian, J. Mater. Res. 26, 2795-2802 (2011), https://doi.org/10.1557/jmr.2011.329.
J. Shen, C. Fu, Y. Liu, X. Zhao, and T. Zhu, Energy Storage Materials, 10, 69–74 (2018), https://doi.org/10.1016/j.ensm.2017.07.014.
C.-C. Hsu, and H.-K. Ma, Materials Science and Engineering B, 198, 80–85 (2015), https://doi.org/10.1016/j.mseb.2015.03.015.
Y. Lei, C. Cheng, Y. Li, R, Wan, and M. Wang, Ceramics International, 43, 9343–9347 (2017), https://doi.org/10.1016/j.ceramint.2017.04.100.
R. Akram, Y. Yan, D. Yang, X. She, G. Zheng, X. Su, and X. Tang, Intermetallics, 74, 1-7 (2016), https://doi.org/10.1016/j.intermet.2016.04.004.
R. Akram, Q. Zhang, D. Yang, Y. Zheng, Y. Yan, X. Su, and X. Tang, Journal of electronic materials, 44(10), 3563-3570 (2015), https://doi.org/10.1007/s11664-015-3882-6.
O.K. Andersen, Phys. Rev. B, 42, 3060 (1975), https://doi.org/10.1103/PhysRevB.12.3060.
D.J. Singh, Planes Waves, Pseudo-potentials and the LAPW Method, (Kluwer Academic Publishers, Boston, 1994).
P. Hohenberg, and W. Kohn, Phys. Rev. B, 136, 864–871 (1964), https://doi.org/10.1103/PhysRev.136.B864.
P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, (Vienna University of Technology, Austria, 2001), pp. 269, http://www.wien2k.at/reg_user/textbooks/usersguide.pdf.
J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) 68, https://doi.org/10.1103/PhysRevLett.77.3865.
G. Surucu, M. Isik, A. Candan, X. Wang, and H.H. Gullu, Physica B, 587, 412146 (2020), https://doi.org/10.1016/j.physb.2020.412146.
G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67-71 (2006), https://doi.org/10.1016/j.cpc.2006.03.007.
Crystalmaker software Ltd, Begbroke, Oxfordshire OX5 1PF, UK, http://www.crystalmaker.com.
R. Hasan, and S.-C. Ur, Transactions on Electrical and Electronic Materials, 19(2), 106-111 (2018), https://doi.org/10.1007/s42341-018-0024-x.
T. Wu, W. Jiang, X. Li, S. Bai, S. Liufu, and L. Chen, Journal of Alloys and Compounds, 467(1-2), 590–594 (2009), https://doi.org/10.1016/j.jallcom.2007.12.055.
G.J. Snyder, and E.S. Toberer, Nat. Mater. 7(2), 105–114 (2008), https://doi.org/10.1038/nmat2090.
T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka, Journal of Alloys and Compounds, 407, 326–329 (2006), https://doi.org/10.1016/j.jallcom.2005.06.036.
A. El-Khouly, A. Novitskii, A.M. Adam, A. Sedegov, A. Kalugina, D. Pankratova, D. Karpenkov, and V. Khovaylo, Journal of Alloys and Compounds, 820, 153413 (2020), https://doi.org/10.1016/j.jallcom.2019.153413.
B. Anissa, D. Radouan, B. Benaouda, and A. Omar, Chinese Journal of Physics, 56, 2926–2936 (2018), https://doi.org/10.1016/j.cjph.2018.09.027.
K. Kaur, and J. Kaur, Journal of Alloys and Compounds, 715, 297-303 (2017), https://doi.org/10.1016/j.jallcom.2017.05.005.
J.W. Sharp, in: Encyclopedia of Condensed Matter Physics, edited by F. Bassani, G.L. Liedl, and P. Wyder, (Academic Press, Cambridge, MA, 2005), pp. 173-180, https://doi.org/10.1016/B0-12-369401-9/00507-6.
S. Azam, S. Goumri-Said, S.A. Khan, H. Ozisik, E. Deligoz, M.B. Kanoun, and W. Khan, Materialia, 10, 100658 (2020), https://doi.org/10.1016/j.mtla.2020.100658.
M. Naseri, D.M. Hoat, J.F. Rivas-Silva, and G.H. Cocoletz, Optik, 210, 164567 (2020), https://doi.org/10.1016/j.ijleo.2020.164567.
V.F. Gantmakher, Reports on Progress in Physics, 37(3), 317 (1974), https://doi.org/10.1088/0034-4885/37/3/001.
A.A. Khan, I. Khan, I. Ahmad, and Z. Ali, Materials Science in Semiconductor Processing, 48, 85-94 (2016), https://doi.org/10.1016/j.mssp.2016.03.012.
S. Azam, M. Umer, U. Saeed, W. Khan, M. Irfan, Z. Abbas, and I.V. Kityk, Journal of Molecular Graphics and Modelling, 94, 107484 (2020), https://doi.org/10.1016/j.jmgm.2019.107484.
M.A.A. Mohamed, E.M.M. Ibrahim, N.P. Rodriguez, S. Hampel, B. Büchner, G. Schierning, K. Nielsch, and R. He, Acta Materialia, 196, 669–676 (2020), https://doi.org/10.1016/j.actamat.2020.07.028.
Авторське право (c) 2021 Джелті Радуан, Бесбес Аніса, Бестані Бенауда
Цю роботу ліцензовано за Міжнародня ліцензія Creative Commons Attribution 4.0.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).