Початкові дослідження електронних властивостей об’ємного та одношарового MoS2 з використанням ДПФ: застосування параметрів спін-орбітального зв'язку (SOC)
Анотація
Двомірні (2D) матеріали в даний час викликають великий інтерес завдяки чудовим властивостям, що відрізняють їх від об’ємних структур. Одношарові та багатошарові дихалькогеніди перехідних металів (TMDC) мають ширину забороненої зони, яка коливається в межах 1-2 еВ, що використовується для пристроїв FET або будь-яких оптоелектронних пристроїв. У випадку TMDC розгляд зосереджено на дисульфіді молібдену (MoS2) через перспективи регулювання забороненої зони, а перехід між властивостями прямих та непрямих переходів зони залежить від його товщини. Розрахунки теорії щільності функціонала (DFT) з різними функціоналами та параметрами спін-орбітальної зв'язку (SOC) проводились для вивчення електронних властивостей об'ємного та одношарового MoS2. Додавання SOC спричинило помітну зміну профілю енергії зони, явно розділивши максимум валентної зони (VBM) на два діапазони. Зона з непрямими переходами об'ємного MoS2 коливається в межах 1,17-1,71 еВ, а зона у випадку одного шару становить 1,6-1,71 еВ. Розраховані параметри порівнювали з отриманими експериментальними та теоретичними результатами. Отримана щільність станів (DOS) може бути використана для пояснення природи зони як в об'ємному, так і в одношаровому MoS2. Ці електронні характеристики важливі для застосування в матеріальних пристроях та енергозберігаючих застосуваннях.
Завантаження
Посилання
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, PNAS, 102(30), 10451 10453 (2005), https://doi.org/10.1073/pnas.0502848102.
W. Choi, I. Lahiri, R. Seelaboyina, and Y.S. Kang, Critical Reviews in Solid State and Materials Sciences, 35, 52 71 (2010), https://doi.org/10.1080/10408430903505036
M.J. Allen, V.C. Tung, and R.B. Kaner, Chemical Reviews, 110(1), 132-145 (2010), https://doi.org/10.1021/cr900070d.
H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P.D. Ye, ACS Nano. 8(4), 4033-4041 (2014), https://doi.org/10.1021/nn501226z.
B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Applied Physics Letters, 97(22), 223109 (2010), https://doi.org/10.1063/1.3524215.
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Nature Nanotechnology, 7(11), 699-712 (2012), https://doi.org/10.1038/nnano.2012.193.
M. Safari, Z. Izadi, J. Jalilian, I. Ahmad, and S. Jalali-Asadabadi, Physics Letters A, 381(6), 663-670 (2017), https://doi.org/10.1016/j.physleta.2016.11.040.
S. Das, J.A. Robinson, M. Dubey, H. Terrones, and M. Terrones, Annual Review of Materials Research, 45(1), 1-27 (2015), https://doi.org/10.1146/annurev-matsci-070214-021034.
D.J. Late, B. Liu, H. Matte, C.N.R. Rao, and V.P. Dravid, Advanced Functional Materials, 22(9), 1894-1905 (2012), https://doi.org/10.1002/adfm.201102913.
C.V. Nguyen, N.N. Hieu, D. Muoi, C.A. Duque, E. Feddi, H.V. Nguyen, L.T.T. Phuong, B.D. Hoi, and H.V. Phuc, Journal of Applied Physics, 123(3), 034301 (2018), https://doi.org/10.1063/1.5009481.
M.H. Fekri, R. Bazvand, M. Soleymani, and M.R. Mehr, International Journal of Nano Dimension, 11(4), 346-354 (2020), http://www.ijnd.ir/article_675374_91ad4efdd80a983d0ba8492569c8e510.pdf.
W. Zhang, Z. Huang, W. Zhang, and Y. Li, "Two-Dimensional Semiconductors with Possible High Room Temperature Mobility," Nano Research, 7(12), 1731-1737 (2014), https://doi.org/10.1007/s12274-014-0532-x.
M. Khaleghian, and F. Azarakhshi, International Journal of Nano Dimension, 10(1), 105-113 (2019), http://www.ijnd.ir/article_661564_d54fcf021f466ebbe353d21c7a171061.pdf.
J.A. Wilson, and A.D. Yoffe, Advances in Physics, 18(73), 193-335 (1969), https://doi.org/10.1080/00018736900101307.
Y. Kim, J.L. Huang, and C.M. Lieber, Applied Physics Letters, 59(26), 3404-3406 (1991), https://doi.org/10.1063/1.105689.
A.H. Reshak, and S. Auluck, Physical Review B, 68, 125101 (2003), https://doi.org/10.1103/PhysRevB.68.125101.
E. Fortin and W.M. Sears, Journal of Physics and Chemistry of Solids. 43(9), 881-884 (1982), https://doi.org/10.1016/0022-3697(82)90037-3.
K.H. Hu, X.G. Hu, and X.J. Sun, Applied Surface Science, 256(8), 2517-2523 (2010), https://doi.org/10.1016/j.apsusc.2009.10.098.
K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Physical Review Letters, 105(13), 36805 (2010), https://doi.org/10.1103/PhysRevLett.105.136805.
P. Joensen, R.F. Frindt, and S.R. Morrison, Materials Research Bulletin, 21(4), 457-461 (1986), https://doi.org/10.1016/0025-5408(86)90011-5.
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nature Nanotechnology, 6, 147 (2011), https://doi.org/10.1038/nnano.2010.279.
J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi, Science, 331(6017), 568-571 (2011), https://doi.org/10.1126/science.1194975.
D. Dey, and D. De, Int. J. Nano Dimens. 9(2), 134-144 (2018), http://www.ijnd.ir/article_658988_772299c871dafd993e3f08bec602d2a1.pdf.
J.K. Ellis, M.J. Lucero, and G.E. Scuseria, Applied Physics Letters, 99(26), 261908 (2011), https://doi.org/10.1063/1.3672219.
S. Ahmad, and S. Mukherjee, Graphene, 3, 52-59 (2014), http://dx.doi.org/10.4236/graphene.2014.34008.
A. Kumar, and P.K. Ahluwalia, Materials Chemistry and Physics, 135(2), 755-761 (2012), https://doi.org/10.1016/j.matchemphys.2012.05.055.
Th. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, and J. Pollmann, Physical Review B, 64, 235305 (2001), https://doi.org/10.1103/PhysRevB.64.235305
D.P. Rai, T.V. Vu, A. Laref, Md.A. Hossain, E. Haque, S. Ahmad, R. Khenatag, and R.K. Thapah, RSC Advances, 10(32), 18830-18840 (2020), https://doi.org/10.1039/D0RA02585B.
F.J. Urbanos, A. Black, R. Bernardo-Gavito, A.L. Vázquez de Parga, R. Miranda, and D. Granados, Nanoscale, 11(23), 11152-11158 (2019), https://doi.org/10.1039/c9nr02464f.
Tung Pham, Guanghui Li, Elena Bekyarova, Mikhail E. Itkis, and Ashok Mulchandani, ACS Nano, 13(3), 3196-3205 (2019), https://doi.org/10.1021/acsnano.8b08778.
N. Goel, R. Kumar, and M. Kumar, AIP Conference Proceedings, 1942(1), 050060 (2018), https://doi.org/10.1063/1.5028691.
M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, Journal of Physics: Condensed Matter, 14(11), 2717-2744 (2002), https://doi.org/10.1088/0953-8984/14/11/301.
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne, Zeitschrift für Kristallographie. 220(5-6), 567-570 (2005), https://doi.org/10.1524/zkri.220.5.567.65075.
D.M. Hoat, T.V. Vu, M.M. Obeid, and H.R. Jappor, Chemical Physics, 527, 110499 (2019), https://doi.org/10.1016/j.chemphys.2019.110499.
J.P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters, 77(18), 3865-3868 (1996), https://doi.org/10.1103/PhysRevLett.77.3865.
J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)]," Physical Review Letters, 78(7), 1396-1396 (1997), https://doi.org/10.1103/PhysRevLett.77.3865.
A.H. MacDonald, W.E. Picket, and D.D. Koelling, Journal of Physics C: Solid State Physics, 13(14), 2675-2683 (1980), https://doi.org/10.1088/0022-3719/13/14/009.
K. Kobayashi, and J. Yamauchi, Surface Science, 357-358, 317-321 (1996), https://doi.org/10.1016/0039-6028(96)00173-2.
L.F. Mattheiss, Physical Review Letters, 30, 784-787 (1973), https://doi.org/10.1103/PhysRevLett.30.784.
C. Ataca, and S. Ciraci, The Journal of Physical Chemistry C, 115(27), 13303-13311 (2011), https://doi.org/10.1021/jp2000442.
S. Lebègue, and O. Eriksson, Physical Review B, 79(11), 115409 (2009), https://doi.org/10.1103/PhysRevB.79.115409.
A. Kuc, N. Zibouche, and T. Heine, Physical Review B, 83(24), 245213 (2011), https://doi.org/10.1103/PhysRevB.83.245213.
Z.Y. Zhu, Y.C. Cheng, and U. Schwingenschlögl, Physical Review B, 84(15), 153402 (2011), https://doi.org/10.1103/PhysRevB.84.153402.
D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Physical Review Letters, 108(19), 196802 (2012), https://doi.org/10.1103/PhysRevLett.108.196802.
H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nature Nanotechnology, 7(8), 490-493 (2012), https://doi.org/10.1038/nnano.2012.95.
M. Bieniek, L. Szulakowska, and P. Hawrylak, Physical Review B, 101(3), 035401 (2020), https://doi.org/10.1103/PhysRevB.101.035401.
Q. Chen, L. Liang, G. Potsi, P. Wan, J. Lu, T. Giousis, E. Thomou, D. Gournis, P. Rudolf, and J. Ye, Nano Letters, 19(3), 1520-1526 (2019), https://doi.org/10.1021/acs.nanolett.8b04207.
C.-H. Chang, X. Fan, S.-H. Lin, and J.-L. Kuo, Physical Review B, 88(19), 195420 (2013), https://doi.org/10.1103/PhysRevB.88.195420.
D.Y. Qiu, F.H. da Jornada, and S.G. Louie, Physical Review Letters, 111(21), 216805 (2013), https://doi.org/10.1103/PhysRevLett.111.216805.
A. Molina-Sánchez, D. Sangalli, K. Hummer, A. Marini, and L. Wirtz, Physical Review B, 88(4), 045412 (2013), https://doi.org/10.1103/PhysRevB.88.045412.
N. Alidoust, G. Bian, S.-Y. Xu, R. Sankar, M. Neupane, C. Liu, I. Belopolski, D.-X. Qu, J.D. Denlinger, F.-C. Chou, and M.Z. Hasan, Nature Communications, 5, 4673 (2014), https://doi.org/10.1038/ncomms5673.
X. Dou, K. Ding, D. Jiang, X. Fan, and B. Sun, ACS Nano. 10(1), 1619-1624 (2016), https://doi.org/10.1021/acsnano.5b07273.
N. Zibouche, A. Kuc, J. Musfeldt, and T. Heine, Annalen der Physik, 526(9-10), 395-401 (2014), https://doi.org/10.1002/andp.201400137.
Авторське право (c) 2020 Майкл Гайян, Френсіс Е. Ботвей, Джозеф Паббі
Цю роботу ліцензовано за Міжнародня ліцензія Creative Commons Attribution 4.0.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).