Synthesis and Characterization of TiO2 thin film Electrode based Dye Sensitized Solar Cell

Keywords: Solar cell, Nanocrystalline TiO2, Surface Morphology, Performance Parameters, Ruthenium Dye, impedance spectroscopy

Abstract

Dye-Sensitized Solar Cells (DSSCs) are prominent alternative devices to conventional p-n junction silicon based solar cells because of their low fabrication cost and high power conversion efficiency, good cost/efficiency ratio. In the present work, DSSC devices were made-up with fluorine doped tin oxide (FTO) glass substrate, a TiO2 compact layer was deposited on FTO, Ruthenium(II) dye (N719), an iodide - triiodide electrolyte and a platinum (Pt) counter electrode. Photo anode with thin film layers of TiO2 and Pt counter electrode (photo-cathode) were prepared. Field emission electron microscope (FESEM) was employed to investigate the surface morphology of TiO2  layers. The DSSC device efficiency was evaluated by J-V characteristics. Fabricated devices were exhibited high power conversion efficiencies. The electrochemical impedance characteristics were analyzed by fitting the experimental results to the corresponding electrical equivalent circuit simulated data.

Downloads

Download data is not yet available.

References

O. K. Simya, M. Selvam, A. Karthik, V. Rajendran, Synth. Met. 188, 124–129 (2014), https://doi.org/10.1016/j.synthmet.2013.12.005.

S. Battersby, Proc. Natl. Acad. Sci. 116, 7-10 (2019), https://doi.org/10.1073/pnas.1820406116.

M. Grätzel, J. Photochem. Photobiol. C Photochem. Rev. 4, 145–153 (2003), https://doi.org/10.1016/S1389-5567(03)00026-1.

K. Ebrahim, Sol. Cells - Dye. Devices, InTech. 171-204 (2012), https://doi.org/10.5772/19749.

W. Jarernboon, S. Pimanpang, S. Maensiri, E. Swatsitang, and V. Amornkitbamrung, Thin Solid Films. 517, 4663–4667 (2009), https://doi.org/10.1016/j.tsf.2009.02.129.

D. Wei, Int. J. Mol. Sci. 11, 1103–13 (2010), https://doi.org/10.3390/ijms11031103.

S. Bose, V. Soni, and K.R. Genwa, Int. J. Sci. Res. Publ. 5, 2250–3153 (2015), http://www.ijsrp.org/research-paper-0415.php?rp=P403882.

B.O. Regan, and M. Gratzel, Nature, 353, 737–740 (1991), https://doi.org/10.1038/353737a0.

C. Cavallo, F. Di Pascasio, A. Latini, M. Bonomo, and D. Dini, J. Nanomater. 2017, 1–31 (2017), https://doi.org/10.1155/2017/5323164.

J. Gong, K. Sumathy, Q. Qiao, and Z. Zhou, Renew. Sustain. Energy Rev. 68, 234–246 (2017), https://doi.org/10.1016/j.rser.2016.09.097.

S. Yun, J.N. Freitas, A.F. Nogueira, Y. Wang, S. Ahmad, and Z.S. Wang, Prog. Polym. Sci. 59, 1–40 (2016), https://doi.org/10.1016/j.progpolymsci.2015.10.004.

M. Eslamian, and J. Newton, Coatings. 4, 85–97 (2014), https://doi.org/10.3390/coatings4010085.

A. Jena, S.P. Mohanty, P. Kumar, J. Naduvath, V. Gondane, P. Lekha, J. Das, H.K. Narula, S. Mallick, and P. Bhargava, Trans. Indian Ceram. Soc. 71, 1–16 (2012), https://doi.org/10.1080/0371750X.2012.689503.

K. Miettunen, J. Vapaavuori, A. Tiihonen, A. Poskela, P. Lahtinen, J. Halme, and P. Lund, Nano Energy. 8, 95–102 (2014), https://doi.org/10.1016/j.nanoen.2014.05.013.

B. Siwach, D. Mohan, S. Sharma, and D. Jyoti, Bull. Mater. Sci. 40, 1371–1377 (2017), https://doi.org/10.1007/s12034-017-1492-z.

T. Phonkhokkong, T. Thongtem, S. Thongtem, A. Phuruangrat, and W. Promnopas, Dig. J. Nanomater. Biostructures. 11, 81–90 (2016), http://www.chalcogen.ro/81_Phonkhokkong.pdf.

T.V. Nguyen, H.C. Lee, and O.B. Yang, Sol. Energy Mater. Sol. Cells. 90, 967–981 (2006), https://doi.org/10.1016/j.solmat.2005.06.001.

S. Xuhui, C. Xinglan, T. Wanquan, W. Dong, and L. Kefei, AIP Adv. 4, 031304 (2014), https://doi.org/10.1063/1.4863295.

S. Widodo, G. Wiranto, and M.N. Hidayat, Energy Procedia. 68, 37–44 (2015), https://doi.org/10.1016/j.egypro.2015.03.230.

A. Karmakar, and J. Ruparelia, in International Conference on Current Trends in Technology, NUiCONE, (IEEE, Piscataway, 2011), pp. 1 6.

D.L. Domtau, J. Simiyu, E.O. Ayieta, L.O. Nyakiti, B. Muthoka, and J.M. Mwabora, Surf. Rev. Lett. 24, 1750065 (2017), https://doi.org/10.1142/S0218625X17500652.

B. Alfa, M.T. Tsepav, R.L. Njinga, and I. Abdulrauf, Appl. Phys. Res. 4, 48-56 (2012), https://doi.org/10.5539/apr.v4n1p48.

A.F. Ole, G.N.C. Santos, and R.V Quiroga, Int. JSER, 3, 1-7 (2012).

L. Wei, P. Wang, Y. Yang, Z. Zhan, Y. Dong, W. Song, and R. Fan, Inorg. Chem. Front. 5, 54–62 (2018), https://doi.org/10.1039/C7QI00503B.

Z.A. Shah, K. Zaib, and A. Khan, J. Fundam Renewable Energy Appl. 7, 4-6 (2017).

H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, Electrochim. Acta. 54, 1319-1324 (2009), https://doi.org/10.1016/j.electacta.2008.09.025.

J.C. Chou, C.M. Chu, Y.H. Liao, C.H. Lai, Y.J. Lin, P.H. You, W.Y. Hsu, C.C. Lu, and Y.H. Nien, IEEE J. Electron Devices Soc. 5, 32-39 (2017).

A. Upadhyaya, C.M. Singh Negi, A. Yadav, S.K. Gupta, and A.S. Verma, Superlattices Microstruct. 122, 410-418 (2018).

N. Sharma, C.M.S. Negi, A.S. Verma, and S.K. Gupta, J. Electron. Mater. 47, 7023-7033 (2018), https://doi.org/10.1007/s11664-018-6629-3.

A.S. Verma, A. Upadhyaya, S.K. Gupta, A. Yadav, and C.M.S. Negi, Semicond. Sci. Technol. 33, 065012 (2018), https://doi.org/10.1088/1361-6641/aac066.

Published
2020-08-13
Cited
How to Cite
Yadav, V., Chaudhary, S., Gupta, S. K., & Verma, A. S. (2020). Synthesis and Characterization of TiO2 thin film Electrode based Dye Sensitized Solar Cell. East European Journal of Physics, (3), 129-133. https://doi.org/10.26565/2312-4334-2020-3-16