Полiадичнi системи, представлення i квантовi групи

Ключові слова: n-арна група, теорема Поста, комутативнiсть, гомоморфiзм, групова дiя, рiвняння Янга- Бакстера

Анотація

Зроблено огляд полiадичних систем та їх представлень, дана класифiкацiя загальних полiадичних систем. Побудованi багатомiснi узагальнення гомоморфiзмиiв, що зберiгають асоцiативнiсть. Визначенi мультидiї i мультимiснi представлення. Наведенi конкретнi приклади матричних представлень для деяких тернарних груп. Визначенi тернарна алгебра i алгебри Хопфа, вивченi їх властивостi. На закiнчення, предствленi деякi тернарнi узагальнення квантових груп та рiвняння Янга-Бакстера.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

Kerner R. Ternary algebraic structures and their applications in physics // Paris, 2000. - 15 p. (Preprint Univ. P. & M. Curie).

de Azcarraga J. A., Izquierdo J. M. n-ary algebras: a review with applications // J. Phys. - 2010. - Vol. A43. - P. 293001.

D¨ornte W. Unterschungen ¨uber einen verallgemeinerten Gruppenbegriff // Math. Z. - 1929. - Vol. 29. - P. 1–19.

Pr¨ufer H. Theorie der abelshen Gruppen I. Grundeigenschaften // Math. Z. - 1924. - Vol. 20. - P. 165–187.

Post E. L. Polyadic groups // Trans. Amer. Math. Soc. - 1940. - Vol. 48. - P. 208–350.

Hossz´u L. M. On the explicit form of n-group operation // Publ. Math. Debrecen. - 1963. - Vol. 10. - P. 88–92.

Gluskin L. M. Position operatives // Math. Sbornik. - 1965. - Vol. 68(110). - № 3. - P. 444–472.

Dudek W. A., G lazek K., Gleichgewicht B. A note on the axioms of n-groups // Coll. Math. Soc. J. Bolyai. 29. Universal Algebra. - Esztergom (Hungary). , 1977. - P. 195–202.

Rusakov S. A definition of an n-ary group // Dokl. Akad. Nauk BSSR. - 1979. - Vol. 23. - P. 965–967.

Weyl H. Classical Groups, Their Invariants and Representations. - Princeton: Princeton Univ. Press, 1946.

Fulton W., Harris J. Representation Theory: a First Course. - N. Y.: Springer, 1991.

Cornwell J. F. Group Theory in Physics: An Introduction. - London: Academic Press, 1997. - 349 p.

Curtis C. W., Reiner I. Representation theory of finite groups and associative algebras. - Providence: AMS, 1962.

Collins M. J. Representations And Characters Of Finite Groups. - Cambridge: Cambridge University Press, 1990. - 242 p.

Kapranov M., Gelfand I. M., Zelevinskii A. Discriminants, Resultants and Multidimensional Determinants. - Berlin: Birkh¨auser, 1994. - 234 p.

Sokolov N. P. Introduction to the Theory of Multidimensional Matrices. - Kiev: Naukova Dumka, 1972. - 175 p.

Kawamura Y. Cubic matrices, generalized spin algebra and uncertainty relation // Progr. Theor. Phys. - 2003. - Vol. 110. - P. 579–587.

Rausch de Traubenberg M. Cubic extentions of the poincare algebra // Phys. Atom. Nucl. - 2008. - Vol. 71. - P. 1102–1108.

Borowiec A., Dudek W., Duplij S. Bi-element representations of ternary groups // Comm. Algebra. - 2006. - Vol. 34. - № 5. - P. 1651–1670.

Dudek W. A., Shahryari M. Representation theory of polyadic groups // Algebr. Represent. Theory. - 2012. - Vol. 15. - № 1. - P. 29–51.

L˜ohmus J., Paal E., Sorgsepp L. Nonassociative Algebras in Physics. - Palm Harbor: Hadronic Press, 1994. - 271 p.

Lounesto P., Ablamowicz R. Clifford Algebras: Applications To Mathematics, Physics, And Engineering. - Birkh¨auser, 2004. - 626 p.

Georgi H. Lie algebras in particle physics. - New York: Perseus Books, 1999. - 320 p.

Abramov V. Z3-graded analogues of Clifford algebras and algebra of Z3-graded symmetries // Algebras Groups Geom. - 1995. - Vol. 12. - № 3. - P. 201–221.

Abramov V. Ternary generalizations of Grassmann algebra // Proc. Est. Acad. Sci., Phys. Math. - 1996. - Vol. 45. - № 2-3. - P. 152–160.

Abramov V., Kerner R., Le Roy B. Hypersymmetry: a Z3-graded generalization of supersymmetry // J. Math. Phys. - 1997. - Vol. 38. - P. 1650–1669.

Filippov V. T. n-Lie algebras // Sib. Math. J. - 1985. - Vol. 26. - P. 879–891.

Michor P. W., Vinogradov A. M. n-ary Lie and associative algebras // Rend. Sem. Mat. Univ. Pol. Torino. - 1996. - Vol. 54. - № 4. - P. 373–392.

Nambu Y. Generalized Hamiltonian dynamics // Phys. Rev. - 1973. - Vol. 7. - P. 2405–2412.

Takhtajan L. On foundation of the generalized Nambu mechanics // Commun. Math. Phys. - 1994. - Vol. 160. - P. 295–315.

Bagger J., Lambert N. Comments on multiple M2-branes // - 2008. - Vol. 2. - P. 105.

Bagger J., Lambert N. Gauge symmetry and supersymmetry of multiple M2-branes // Phys. Rev. - 2008. - Vol. D77. - P. 065008.

Gustavsson A. One-loop corrections to Bagger-Lambert theory // Nucl. Phys. - 2009. - Vol. B807. - P. 315–333.

Ho P.-M., Hou R.-C., Matsuo Y., Shiba S. M5-brane in three-form flux and multiple M2-branes // - 2008. - Vol. 08. - P. 014.

Low A. M. Worldvolume superalgebra of BLG theory with Nambu-Poisson structure // - 2010. - Vol. 04. - P. 089.

Abe E. Hopf Algebras. - Cambridge: Cambridge Univ. Press, 1980. - 221 p.

Sweedler M. E. Hopf Algebras. - New York: Benjamin, 1969. - 336 p.

Montgomery S. Hopf algebras and their actions on rings. - Providence: AMS, 1993. - 238 p.

Kassel C. Quantum Groups. - New York: Springer-Verlag, 1995. - 531 p.

Shnider S., Sternberg S. Quantum Groups. - Boston: International Press, 1993. - 371 p.

Duplij S., Li F. Regular solutions of quantum Yang-Baxter equation from weak Hopf algebras // Czech. J. Phys. - 2001. - Vol. 51. - № 12. - P. 1306–1311.

Duplij S., Sinel’shchikov S. Quantum enveloping algebras with von Neumann regular Cartan-like generators and the Pierce decomposition // Commun. Math. Phys. - 2009. - Vol. 287. - № 1. - P. 769–785.

Li F., Duplij S. Weak Hopf algebras and singular solutions of quantum Yang-Baxter equation // Commun. Math. Phys. - 2002. - Vol. 225. - № 1. - P. 191–217.

Duplij S., Sinel’shchikov S. Classification of Uq (sl2)-module algebra structures on the quantum plane // J. Math. Physics, Analysis, Geometry. - 2010. - Vol. 6. - № 6. - P. 21–46.

Duplij S. Ternary Hopf algebras // Symmetry in Nonlinear Mathematical Physics. - Kiev. Institute of Mathematics, 2001. - P. 25-34.

Borowiec A., Dudek W., Duplij S. Basic concepts of ternary Hopf algebras // Journal of Kharkov National University, ser. Nuclei, Particles and Fields. - 2001. - Vol. 529. - № 3(15). - P. 21–29.

Bergman G. M. An invitation to general algebra and universal constructions. - Berkeley: University of California, 1995. - 358 p.

Hausmann B. A., Ore . Theory of quasigroups // Amer. J. Math. - 1937. - Vol. 59. - P. 983–1004.

Clifford A. H., Preston G. B. The Algebraic Theory of Semigroups. Vol. 1 - Providence: Amer. Math. Soc., 1961.

Brandt H. ¨Uber eine Verallgemeinerung des Gruppenbegriffes // Math. Annalen. - 1927. - Vol. 96. - P. 360–367.

Bruck R. H. A Survey on Binary Systems. - New York: Springer-Verlag, 1966.

Bourbaki N. Elements of Mathematics: Algebra 1. - Springer, 1998.

Dudek W. A. Remarks to g lazek’s results on n-ary groups // Discuss. Math., Gen. Algebra Appl. - 2007. - Vol. 27. - № 2. - P. 199–233.

Dudek W. A., Michalski J. On retract of polyadic groups // Demonstratio Math. - 1984. - Vol. 17. - P. 281–301.

Thurston H. A. Partly associative operations // J. London Math. Soc. - 1949. - Vol. 24. - P. 260–271.

Belousov V. D. n-ary Quasigroups. - Kishinev: Shtintsa, 1972. - 225 p.

Sokhatsky F. M. On the associativity of multiplace operations // Quasigroups Relat. Syst. - 1997. - Vol. 4. - P. 51–66.

Michalski J. Covering k-groups of n-groups // Archiv. Math. - 1981. - Vol. 17. - № 4. - P. 207–226.

Pop M. S., Pop A. On some relations on n-monoids // Carpathian J. Math. - 2004. - Vol. 20. - № 1. - P. 87–94.

ˇCupona G., Trpenovski B. Finitary associative operations with neutral elements // Bull. Soc. Math. Phys. Macedoine. - 1961. - Vol. 12. - P. 15–24.

Evans T. Abstract mean values // Duke Math J. - 1963. - Vol. 30. - P. 331–347.

G lazek K., Gleichgewicht B. Abelian n-groups // Colloq. Math. Soc. J. Bolyai. Universal Algebra (Esztergom, 1977). - Amsterdam. North-Holland, 1982. - P. 321–329.

Stojakovi´c Z., Dudek W. A. On -permutable n-groups // Publ. Inst. Math., Nouv. S´er. - 1986. - Vol. 40(54). - P. 49–55.

Rusakov S. A. Some Applications of n-ary Group Theory. - Minsk: Belaruskaya navuka, 1998. - 180 p.

Celakoski N. On some axiom systems for n-groups // Mat. Bilt. - 1977. - Vol. 1. - P. 5–14.

Gal’mak A. M. n-ary groups, Part 1. - Gomel: Gomel University, 2003. - 195 p.

ˇUsan J. n-groups in the light of the neutral operations // Math. Moravica. - 2003. - Vol. Special vol.

Sokolov E. I. On the theorem of Gluskin-Hossz´u on D¨ornte groups // Mat. Issled. - 1976. - Vol. 39. - P. 187–189.

Yurevych O. V. Criteria for invertibility of elements in associates // Ukr. Math. J. - 2001. - Vol. 53. - № 11. - P. 1895–1905.

Timm J. Verbandstheoretische Behandlung n-stelliger Gruppen // Abh. Math. Semin. Univ. Hamb. - 1972. - Vol. 37. - P. 218–224.

Dudek W. A. Remarks on n-groups // Demonstratio Math. - 1980. - Vol. 13. - P. 165–181.

Dudek W. A. Autodistributive n-groups // Annales Sci. Math. Polonae, Commentationes Math. - 1993. - Vol. 23. - P. 1–11.

Heine E. Handbuch der Kugelfunktionan. - Berlin: Reimer, 1878.

Kac V., Cheung P. Quantum calculus. - New York: Springer, 2002. - 112 p.

Petrescu A. On the homotopy of universal algebras. I. // Rev. Roum. Math. Pures Appl. - 1977. - Vol. 22. - P. 541–551.

Halaˇs R. A note on homotopy in universal algebra // Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. - 1994. - Vol. 33. - № 114. - P. 39–42.

G lazek K., Gleichgewicht B. Bibliography of n-groups (polyadic groups) and some group like n-ary systems // Proceedings of the Symposium on n-ary structures. - Skopje. Macedonian Academy of Sciences and Arts, 1982. - P. 253–289.

Fujiwara T. On mappings between algebraic systems // Osaka Math. J. - 1959. - Vol. 11. - P. 153–172.

Vidal J. C., Tur J. S. A 2-categorial generalization of the concept of institution // Stud. Log. - 2010. - Vol. 95. - № 3. - P. 301–344.

Novotn´y M. Homomorphisms of algebras // Czech. Math. J. - 2002. - Vol. 52. - № 2. - P. 345–364.

Novotn´y M. Mono-unary algebras in the work of Czechoslovak mathematicians // Arch. Math., Brno. - 1990. - Vol. 26. - № 2-3. - P. 155–164.

Gal’mak A. M. Generalized morphisms of algebraic systems // Vopr. Algebry. - 1998. - Vol. 12. - P. 36–46.

Gal’mak A. M. Generalized morphisms of Abelian m-ary groups // Discuss. Math. - 2001. - Vol. 21. - № 1. - P. 47–55.

Gal’mak A. M. n-ary groups, Part 2. - Minsk: Belarus State University, 2007. - 324 p.

Goetz A. On weak isomorphisms and weak homomorphisms of abstract algebras // Colloq. Math. - 1966. - Vol. 14. - P. 163–167.

Marczewski E. Independence in abstract algebras. Results and problems // Colloq. Math. - 1966. - Vol. 14. - P. 169–188.

G lazek K., Michalski J. On weak homomorphisms of general non-indexed algebras // Bull. Acad. Pol. Sci., S´er. Sci. Math. Astron. Phys. - 1974. - Vol. 22. - P. 651–656.

G lazek K. Weak homomorphisms of general algebras and related topics // Math. Semin. Notes, Kobe Univ. - 1980. - Vol. 8. - P. 1–36.

Traczyk T. Weak isomorphisms of Boolean and Post algebras // Colloq. Math. - 1965. - Vol. 13. - P. 159–164.

Denecke K., Wismath S. L. Universal Algebra and Coalgebra. - Singapore: World Scientific, 2009.

Denecke K., Saengsura K. State-based systems and (F1; F2)-coalgebras // East-West J. Math.,. - 2008. - Vol. Spec. Vol. - P. 1–31.

Chung K. O., Smith J. D. H. Weak homomorphisms and graph coalgebras // Arab. J. Sci. Eng., Sect. C, Theme Issues. - 2008. - Vol. 33. - № 2. - P. 107–121.

Kolibiar M. Weak homomorphisms in some classes of algebras // Stud. Sci. Math. Hung. - 1984. - Vol. 19. - P. 413–420.

G lazek K., Michalski J. Weak homomorphisms of general algebras // Commentat. Math. - 1977. - Vol. 19 (1976). - P. 211–228.

Cz´ak´any B. On the equivalence of certain classes of algebraic systems // Acta Sci. Math. (Szeged). - 1962. - Vol. 23. - P. 46–57.

Mal’tcev A. I. Free topological algebras // Izv. Akad. Nauk SSSR. Ser. Mat. - 1957. - Vol. 21. - P. 171—-198.

Mal’tsev A. I. The structural characteristic of some classes of algebras // Dokl. Akad. Nauk SSSR. - 1958. - Vol. 120. - P. 29–32.

Ellerman D. A theory of adjoint functors – with some thoughts about their philosophical significance // What is category theory? - Monza (Milan). Polimetrica, 2006. - P. 127–183.

Ellerman D. Adjoints and emergence: applications of a new theory of adjoint functors // Axiomathes. - 2007. - Vol. 17. - № 1. - P. 19–39.

csi B. P. On Morita contexts in bicategories // Applied Categorical Structures. - 2011. - P. 1–18.

Chronowski A. A ternary semigroup of mappings // Demonstr. Math. - 1994. - Vol. 27. - № 3-4. - P. 781–791.

Chronowski A. On ternary semigroups of homomorphisms of ordered sets // Arch. Math. (Brno). - 1994. - Vol. 30. - № 2. - P. 85–95.

Chronowski A., Novotn´y M. Ternary semigroups of morphisms of objects in categories // Archivum Math. (Brno). - 1995. - Vol. 31. - P. 147–153.

Gal’mak A. M. Polyadic associative operations on Cartesian powers // Proc. of the Natl. Academy of Sciences of Belarus, Ser. Phys.-Math. Sci. - 2008. - Vol. 3. - P. 28–34.

Gal’mak A. M. Polyadic analogs of the Cayley and Birkhoff theorems // Russ. Math. - 2001. - Vol. 45. - № 2. - P. 10–15.

Gleichgewicht B., Wanke-Jakubowska M. B., Wanke-Jerie M. E. On representations of cyclic n-groups // Demonstr. Math. - 1983. - Vol. 16. - P. 357–365.

Wanke-Jakubowska M. B., Wanke-Jerie M. E. On representations of n-groups // Annales Sci. Math. Polonae, Commentationes Math. - 1984. - Vol. 24. - P. 335–341.

Berezin F. A. Introduction to Superanalysis. - Dordrecht: Reidel, 1987. - 421 p.

Kirillov A. A. Elements of the Theory of Representations. - Berlin: Springer-Verlag, 1976.

Husem¨oller D., Joachim M., Jurˇco B., Schottenloher M. G-spaces, G-bundles, and G-vector bundles // Basic Bundle Theory and K-Cohomology Invariants. - Berlin-Heidelberg. Springer, 2008. - P. 149-161.

Mal’tcev A. I. On general theory of algebraic systems // Mat. Sb. - 1954. - Vol. 35. - № 1. - P. 3–20.

Gal’mak A. M. Translations of n-ary groups. // Dokl. Akad. Nauk BSSR. - 1986. - Vol. 30. - P. 677–680.

Zekovi´c B., Artamonov V. A. A connection between some properties of n-group rings and group rings // Math. Montisnigri. - 1999. - Vol. 15. - P. 151–158.

Zekovi´c B., Artamonov V. A. On two problems for n-group rings // Math. Montisnigri. - 2002. - Vol. 15. - P. 79–85.

Carlsson R. N-ary algebras // Nagoya Math. J. - 1980. - Vol. 78. - № 1. - P. 45–56.

Bremner M., Hentzel I. Identities for generalized lie and jordan products on totally associative triple systems // J. Algebra. - 2000. - Vol. 231. - № 1. - P. 387–405.

Madore J. Introduction to Noncommutative Geometry and its Applications. - Cambridge: Cambridge University Press, 1995.

Kogorodski L. I., Soibelman Y. S. Algebras of Functions on Quantum Groups. - Providence: AMS, 1998.

Chari V., Pressley A. A Guide to Quantum Groups. - Cambridge: Cambridge University Press, 1996.

Majid S. Foundations of Quantum Group Theory. - Cambridge: Cambridge University Press, 1995.

Drinfeld V. G. Quantum groups // Proceedings of the ICM, Berkeley. - Phode Island. AMS, 1987. - P. 798–820.

Опубліковано
2012-09-28
Цитовано
Як цитувати
Duplij, S. (2012). Полiадичнi системи, представлення i квантовi групи. Східно-європейський фізичний журнал, (1017(3), 28-59. вилучено із https://periodicals.karazin.ua/eejp/article/view/13689