Coupled-Channels Analysis and Optical Model Potential Extraction for Deuteron Scattering From 6Li to 208Pb

Keywords: Coupled-Channel Reactions, Deuteron, Elastic scattering, Inelastic scattering, Optical model potential parameters, Differential cross section

Abstract

Deuteron-nucleus elastic and inelastic scattering from 6Li to 208Pb has been studied for incident energies ranging from 9.9 to 270 MeV. The main goal of this work is to study the effect of coupling the nuclear ground state to inelastic excitation channels on the energy dependence of optical model potential (OMP) parameters. Using the FRESCO and SFRESCO codes, we explicitly coupled the elastic channel to low-lying collective states and extracted OMP parameters through χ2 minimization. The best-fit optical model parameters were obtained for elastic and inelastic angular distribution data. Our elastic and inelastic angular distribution fits show excellent agreement with the experimental data since more than one set of potential parameters can reproduce a given angular distribution data. When the ground state was coupled to the most important inelastic excitation channels the energy dependence of the OMP parameters was reduced. This is most obvious for optical model parameters whose value became almost constant when channel coupling was considered.

Downloads

Download data is not yet available.

References

Coupled-Channels Analysis and Optical Model Potential Extraction for Deuteron...

EEJP. 3 (2025)

B. Buck, Phys. Rev. 130, 712 (1963). https://doi.org/10.1103/PhysRev.130.712

E. Cereda et al., Phys. Rev. C, 26, 1941 (1982). https://doi.org/10.1103/PhysRevC.26.1941

D. M. Chase, L. Wilets, and A. R. Edmonds, Phys. Rev. 110, 1080 (1958). https://doi.org/10.1103/PhysRev.110.1080

S. Chiba et al., J. Nucl. Sci. Technol. 44, 838 (2007). https://doi.org/10.1080/18811248.2007.9711356

S. Cwiok et al., Comput. Phys. Commun. 46, 379 (1987). https://doi.org/10.1016/0010-4655(87)90093-2

W. W. Daehnick, J. D. Childs, and Z. Vrcelj, Phys. Rev. C, 21, 2253 (1980). https://doi.org/10.1103/PhysRevC.21.2253

H. Feshbach, Ann. Phys. 5, 357 (1958). https://doi.org/10.1016/0003-4916(58)90007-1

H. Feshbach, C. E. Porter, and V. F. Weisskopf, Phys. Rev. 96, 448 (1954). https://doi.org/10.1103/PhysRev.96.448

R. W. Finlay et al., Phys. Rev. C, 30, 796 (1984). https://doi.org/10.1103/PhysRevC.30.796

P. Fraser et al., Eur. Phys. J. A, 35, 69 (2008). https://doi.org/10.1140/epja/i2007-10524-1

M. P. Fricke and G. R. Satchler, Phys. Rev. 139, B567 (1965). https://doi.org/10.1103/PhysRev.139.B567

M. P. Fricke et al., Phys. Rev. 156, 1207 (1967). https://doi.org/10.1103/PhysRev.156.1207

G. H. Rawitscher, Nucl. Phys. A, 475, 519 (1987). https://doi.org/10.1016/0375-9474(87)90076-5

L. J. B. Goldfarb, Nucl. Phys. 7, 622 (1958). https://doi.org/10.1016/0029-5582(58)90105-1

L. Grodzins, Phys. Lett. 2, 88 (1962). https://doi.org/10.1016/0031-9163(62)90138-0

Y. Han, Y. Shi, and Q. Shen, Phys. Rev. C, 74, 044615 (2006). https://doi.org/10.1103/PhysRevC.74.044615

G. Haouat et al., Phys. Rev. C, 30, 1795 (1984). https://doi.org/10.1103/PhysRevC.30.1795

I. N. Ghabar and M. I. Jaghoub, Phys. Rev. C, 91, 064308 (2015). https://doi.org/10.1103/PhysRevC.91.064308

M. I. Jaghoub et al., Can. J. Phys. 100, 309 (2022). https://doi.org/10.1139/cjp-2021-0380

A. J. Koning and J. P. Delaroche, Nucl. Phys. A, 713, 231 (2003). https://doi.org/10.1016/S0375-9474(02)01321-0

A. Korff et al., Phys. Rev. C, 70, 067601 (2004). https://doi.org/10.1103/PhysRevC.70.067601

M. I. Jaghoub, A. E. Lovell, and F. M. Nunes, Phys. Rev. C, 98, 024609 (2018). https://doi.org/10.1103/PhysRevC.98.024609

M. I. Jaghoub and G. H. Rawitscher, Phys. Rev. C, 84, 034618 (2011). https://doi.org/10.1103/PhysRevC.84.034618

M. I. Jaghoub and G. H. Rawitscher, Phys. Rev. C, 85, 024608 (2012). https://doi.org/10.1103/PhysRevC.85.024608

F. Perey and B. Buck, Nucl. Phys. 32, 353 (1962). https://doi.org/10.1016/0029-5582(62)90270-0

S. Raman, C. W. Nestor Jr., and P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001). https://doi.org/10.1006/adnd.2001.0858

S. Raman et al., Phys. Rev. C, 43, 556 (1991). https://doi.org/10.1103/PhysRevC.43.556

S. Raman and C. W. Nestor Jr., Phys. Rev. C, 37, 805 (1988). https://doi.org/10.1103/PhysRevC.37.805

G. H. Rawitscher and D. Lukaszek, Phys. Rev. C, 69, 044608 (2004). https://doi.org/10.1103/PhysRevC.69.044608

S. Alameer, M. I. Jaghoub, and I. Ghabar, J. Phys. G: Nucl. Part. Phys. 49, 015106 (2022). https://doi.org/10.1088/1361-6471/

ac3e3b

W. S. Al-Rayashi and M. I. Jaghoub, Phys. Rev. C, 93, 064311 (2016). https://doi.org/10.1103/PhysRevC.93.064311

I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988). https://doi.org/10.1016/0167-7977(88)90005-2

T. Tamura, Rev. Mod. Phys. 37, 679 (1965). https://doi.org/10.1103/RevModPhys.37.679

V. M. Strutinsky, Nucl. Phys. A, 95, 420 (1967). https://doi.org/10.1016/0375-9474(67)90510-6

G. M. Crawley and G. T. Garvey, Phys. Rev. 160, 981 (1967). https://doi.org/10.1103/PhysRev.160.981

R. H. Spear, Phys. Rep. 73, 369 (1981). https://doi.org/10.1016/0370-1573(81)90059-4

D. Woods and D. S. Saxon, Diffuse Surface Optical Model for Nucleon-Nuclei Scattering, Phys. Rev. 95, 577 (1954). https:

//doi.org/10.1103/PhysRev.95.577

A. Bohr and B.R. Mottelson, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 27, No. 16 (1953).

A. Bohr and B.R. Mottelson, Nuclear Structure, Vol. I (W. A. Benjamin, New York, 1969).

I. J. Thompson and F. M. Nunes, Nuclear Reactions for Astrophysics (Cambridge University Press, Cambridge, 2009).

A. S. Green, The Nuclear Independent Particle Model: The Shell and Optical Models (Academic Press, New York, 1968).

H. Feshbach, Theoretical Nuclear Physics: Nuclear Reactions (John Wiley and Sons, 1982).

J. M. Eisenberg and W. Greiner, Nuclear Models, Vol. I (North-Holland, Amsterdam, 1970).

A. J. Koning, S. Hilaire, and M. Duijvestijn, in Proc. Int. Conf. Nucl. Data for Science and Technology, Nice, France, 2007 (EDP

Sciences, 2008), p. 211. https://doi.org/10.1051/ndata:07767

EXFOR —Experimental Nuclear Reaction Data, IAEA. https://www-nds.iaea.org/exfor/

CINDA— Computer Index of Nuclear Reaction Data, IAEA. https://www-nds.iaea.org/exfor/cinda.htm

R. L. Walter and R. M. Drisko, Phys. Rev. 124, 832 (1961). https://doi.org/10.1103/PhysRev.124.832

EEJP. 3 (2025) Waleed Saleh Alrayashi

S. M. Smith and D. A. Goldberg, Phys. Rev. 129, 2690 (1963). https://doi.org/10.1103/PhysRev.129.2690

D. A. Goldberg and S. M. Smith, Phys. Rev. 129, 2683 (1963). https://doi.org/10.1103/PhysRev.129.2683

Y. Sakuragi, M. Yahiro, and M. Kamimura, Phys. Rev. C, 35, 2161 (1987). https://doi.org/10.1103/PhysRevC.35.2161

O. Aspelund, J. S. Lilley, J. D. Hemingway, Nucl. Phys. A, 253, 263 (1975). https://doi.org/10.1016/0375-9474(75)90263-5

Y. Satou et al., Phys. Rev. C, 65, 054602 (2002). https://doi.org/10.1103/PhysRevC.65.054602

Y. Satou et al., Phys. Lett. B, 549, 307 (2002). https://doi.org/10.1016/S0370-2693(02)02957-X

M. Beiner et al., Nucl. Phys. A, 238, 29 (1975). https://doi.org/10.1016/0375-9474(75)90378-7

S. Hinds et al., Nucl. Phys. A, 113, 314 (1968). https://doi.org/10.1016/0375-9474(68)90574-0

M. A. Franey, R. L. Boudrie, and B. D. Anderson, Phys. Rev. C, 29, 1118 (1984). https://doi.org/10.1103/PhysRevC.29.1118

Published
2025-06-18
Cited
How to Cite
Alrayashi, W. S. (2025). Coupled-Channels Analysis and Optical Model Potential Extraction for Deuteron Scattering From 6Li to 208Pb. East European Journal of Physics, (3), 50-68. https://doi.org/10.26565/2312-4334-2025-3-05