Coupled-Channels Analysis and Optical Model Potential Extraction for Deuteron Scattering From 6Li to 208Pb
Abstract
Deuteron-nucleus elastic and inelastic scattering from 6Li to 208Pb has been studied for incident energies ranging from 9.9 to 270 MeV. The main goal of this work is to study the effect of coupling the nuclear ground state to inelastic excitation channels on the energy dependence of optical model potential (OMP) parameters. Using the FRESCO and SFRESCO codes, we explicitly coupled the elastic channel to low-lying collective states and extracted OMP parameters through χ2 minimization. The best-fit optical model parameters were obtained for elastic and inelastic angular distribution data. Our elastic and inelastic angular distribution fits show excellent agreement with the experimental data since more than one set of potential parameters can reproduce a given angular distribution data. When the ground state was coupled to the most important inelastic excitation channels the energy dependence of the OMP parameters was reduced. This is most obvious for optical model parameters whose value became almost constant when channel coupling was considered.
Downloads
References
Coupled-Channels Analysis and Optical Model Potential Extraction for Deuteron...
EEJP. 3 (2025)
B. Buck, Phys. Rev. 130, 712 (1963). https://doi.org/10.1103/PhysRev.130.712
E. Cereda et al., Phys. Rev. C, 26, 1941 (1982). https://doi.org/10.1103/PhysRevC.26.1941
D. M. Chase, L. Wilets, and A. R. Edmonds, Phys. Rev. 110, 1080 (1958). https://doi.org/10.1103/PhysRev.110.1080
S. Chiba et al., J. Nucl. Sci. Technol. 44, 838 (2007). https://doi.org/10.1080/18811248.2007.9711356
S. Cwiok et al., Comput. Phys. Commun. 46, 379 (1987). https://doi.org/10.1016/0010-4655(87)90093-2
W. W. Daehnick, J. D. Childs, and Z. Vrcelj, Phys. Rev. C, 21, 2253 (1980). https://doi.org/10.1103/PhysRevC.21.2253
H. Feshbach, Ann. Phys. 5, 357 (1958). https://doi.org/10.1016/0003-4916(58)90007-1
H. Feshbach, C. E. Porter, and V. F. Weisskopf, Phys. Rev. 96, 448 (1954). https://doi.org/10.1103/PhysRev.96.448
R. W. Finlay et al., Phys. Rev. C, 30, 796 (1984). https://doi.org/10.1103/PhysRevC.30.796
P. Fraser et al., Eur. Phys. J. A, 35, 69 (2008). https://doi.org/10.1140/epja/i2007-10524-1
M. P. Fricke and G. R. Satchler, Phys. Rev. 139, B567 (1965). https://doi.org/10.1103/PhysRev.139.B567
M. P. Fricke et al., Phys. Rev. 156, 1207 (1967). https://doi.org/10.1103/PhysRev.156.1207
G. H. Rawitscher, Nucl. Phys. A, 475, 519 (1987). https://doi.org/10.1016/0375-9474(87)90076-5
L. J. B. Goldfarb, Nucl. Phys. 7, 622 (1958). https://doi.org/10.1016/0029-5582(58)90105-1
L. Grodzins, Phys. Lett. 2, 88 (1962). https://doi.org/10.1016/0031-9163(62)90138-0
Y. Han, Y. Shi, and Q. Shen, Phys. Rev. C, 74, 044615 (2006). https://doi.org/10.1103/PhysRevC.74.044615
G. Haouat et al., Phys. Rev. C, 30, 1795 (1984). https://doi.org/10.1103/PhysRevC.30.1795
I. N. Ghabar and M. I. Jaghoub, Phys. Rev. C, 91, 064308 (2015). https://doi.org/10.1103/PhysRevC.91.064308
M. I. Jaghoub et al., Can. J. Phys. 100, 309 (2022). https://doi.org/10.1139/cjp-2021-0380
A. J. Koning and J. P. Delaroche, Nucl. Phys. A, 713, 231 (2003). https://doi.org/10.1016/S0375-9474(02)01321-0
A. Korff et al., Phys. Rev. C, 70, 067601 (2004). https://doi.org/10.1103/PhysRevC.70.067601
M. I. Jaghoub, A. E. Lovell, and F. M. Nunes, Phys. Rev. C, 98, 024609 (2018). https://doi.org/10.1103/PhysRevC.98.024609
M. I. Jaghoub and G. H. Rawitscher, Phys. Rev. C, 84, 034618 (2011). https://doi.org/10.1103/PhysRevC.84.034618
M. I. Jaghoub and G. H. Rawitscher, Phys. Rev. C, 85, 024608 (2012). https://doi.org/10.1103/PhysRevC.85.024608
F. Perey and B. Buck, Nucl. Phys. 32, 353 (1962). https://doi.org/10.1016/0029-5582(62)90270-0
S. Raman, C. W. Nestor Jr., and P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001). https://doi.org/10.1006/adnd.2001.0858
S. Raman et al., Phys. Rev. C, 43, 556 (1991). https://doi.org/10.1103/PhysRevC.43.556
S. Raman and C. W. Nestor Jr., Phys. Rev. C, 37, 805 (1988). https://doi.org/10.1103/PhysRevC.37.805
G. H. Rawitscher and D. Lukaszek, Phys. Rev. C, 69, 044608 (2004). https://doi.org/10.1103/PhysRevC.69.044608
S. Alameer, M. I. Jaghoub, and I. Ghabar, J. Phys. G: Nucl. Part. Phys. 49, 015106 (2022). https://doi.org/10.1088/1361-6471/
ac3e3b
W. S. Al-Rayashi and M. I. Jaghoub, Phys. Rev. C, 93, 064311 (2016). https://doi.org/10.1103/PhysRevC.93.064311
I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988). https://doi.org/10.1016/0167-7977(88)90005-2
T. Tamura, Rev. Mod. Phys. 37, 679 (1965). https://doi.org/10.1103/RevModPhys.37.679
V. M. Strutinsky, Nucl. Phys. A, 95, 420 (1967). https://doi.org/10.1016/0375-9474(67)90510-6
G. M. Crawley and G. T. Garvey, Phys. Rev. 160, 981 (1967). https://doi.org/10.1103/PhysRev.160.981
R. H. Spear, Phys. Rep. 73, 369 (1981). https://doi.org/10.1016/0370-1573(81)90059-4
D. Woods and D. S. Saxon, Diffuse Surface Optical Model for Nucleon-Nuclei Scattering, Phys. Rev. 95, 577 (1954). https:
//doi.org/10.1103/PhysRev.95.577
A. Bohr and B.R. Mottelson, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 27, No. 16 (1953).
A. Bohr and B.R. Mottelson, Nuclear Structure, Vol. I (W. A. Benjamin, New York, 1969).
I. J. Thompson and F. M. Nunes, Nuclear Reactions for Astrophysics (Cambridge University Press, Cambridge, 2009).
A. S. Green, The Nuclear Independent Particle Model: The Shell and Optical Models (Academic Press, New York, 1968).
H. Feshbach, Theoretical Nuclear Physics: Nuclear Reactions (John Wiley and Sons, 1982).
J. M. Eisenberg and W. Greiner, Nuclear Models, Vol. I (North-Holland, Amsterdam, 1970).
A. J. Koning, S. Hilaire, and M. Duijvestijn, in Proc. Int. Conf. Nucl. Data for Science and Technology, Nice, France, 2007 (EDP
Sciences, 2008), p. 211. https://doi.org/10.1051/ndata:07767
EXFOR —Experimental Nuclear Reaction Data, IAEA. https://www-nds.iaea.org/exfor/
CINDA— Computer Index of Nuclear Reaction Data, IAEA. https://www-nds.iaea.org/exfor/cinda.htm
R. L. Walter and R. M. Drisko, Phys. Rev. 124, 832 (1961). https://doi.org/10.1103/PhysRev.124.832
EEJP. 3 (2025) Waleed Saleh Alrayashi
S. M. Smith and D. A. Goldberg, Phys. Rev. 129, 2690 (1963). https://doi.org/10.1103/PhysRev.129.2690
D. A. Goldberg and S. M. Smith, Phys. Rev. 129, 2683 (1963). https://doi.org/10.1103/PhysRev.129.2683
Y. Sakuragi, M. Yahiro, and M. Kamimura, Phys. Rev. C, 35, 2161 (1987). https://doi.org/10.1103/PhysRevC.35.2161
O. Aspelund, J. S. Lilley, J. D. Hemingway, Nucl. Phys. A, 253, 263 (1975). https://doi.org/10.1016/0375-9474(75)90263-5
Y. Satou et al., Phys. Rev. C, 65, 054602 (2002). https://doi.org/10.1103/PhysRevC.65.054602
Y. Satou et al., Phys. Lett. B, 549, 307 (2002). https://doi.org/10.1016/S0370-2693(02)02957-X
M. Beiner et al., Nucl. Phys. A, 238, 29 (1975). https://doi.org/10.1016/0375-9474(75)90378-7
S. Hinds et al., Nucl. Phys. A, 113, 314 (1968). https://doi.org/10.1016/0375-9474(68)90574-0
M. A. Franey, R. L. Boudrie, and B. D. Anderson, Phys. Rev. C, 29, 1118 (1984). https://doi.org/10.1103/PhysRevC.29.1118
Copyright (c) 2025 Waleed Saleh Alrayashi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



