Global Coupled-channels Phenomenological Optical Model Potential for Neutron-Nucleus Scattering From 6Li to 238U
Abstract
The neutron - nucleus scattering process is considered to develop smooth functional forms for the real and imaginary parts of the phenomenological optical potential using the formalism of coupled - channels analysis. We consider intermediate and heavy nuclear targets and investigate the possibility of extending the model to the usually excluded case of light nuclei. Using our model, we simultaneously predict elastic and inelastic angular distributions for neutron scattering from 6Li to 238U for various energies in the range 100 keV < E < 30 MeV for which inelastic angular distributions data are available. We obtain smooth forms for the real and imaginary depths of the volume and surface potential terms as functions of energy, mass number and the asymmetry between the proton and neutron numbers in the target nucleus. The depths of the real and imaginary spin - orbit term, and all the geometry parameters of the potential are fixed. Our predicted elastic and inelastic differential cross sections are in very good agreement with the measured data. The calculated total elastic, total cross sections and the analyzing powers are in a fair overall agreement with the experimental values particularly for the intermediate and heavy nuclei.
Downloads
References
H. Feshbach, Ann. of Phys. 5, 357 (1958). https://doi.org/10.1016/0003-4916(58)90007-1
A.J. Koning, and J.P. Delaroche, Nucl. Phys. A, 713, 231 (2003). https://doi.org/10.1016/S0375-9474(02)01321-0
Y. Han, Y. Xu, H. Liang, H. Guo, and Q. Shen, Phys.Rev. C, 81, 024616 (2010).https://doi.org/10.1103/PhysRevC.81.024616
S. Kunieda, S. Chiba, K. shibata, A. Ichihara, and E.Sh. Sukhovitski, Journal of nuclear science and technology, 44(6), 838 (2007). https://doi.org/10.1080/18811248.2007.9711321
I.J.Thompson, and F.M. Nunes, Nuclear reactions for Astrophysics, (Cambridge University Press, 2009).
G. Racah, Phys. Rev. 62, 438 (1942). https://doi.org/10.1103/PhysRev.62.438
J.M. Eisenberg, and W. Greiner, Nuclear Models, Vol. 1, Ch. 2, (North-Holland, 1970).
A. Saleh, and M.I. Jaghoub, Phys. Rev. C, 109, 034606 (2024). https://doi.org/10.1103/PhysRevC.109.034606
A. Albelleh, M.I. Jaghoub, and W.S. Al-Rayashi, Nucl. Phys. A, 1024 , 122461 (2022). https://doi.org/10.1016/j.nuclphysa.2022.122461
S. Alameer, M.I. Jaghoub, and I, Ghabar, J. Phys. G:Nucl. Part. Phys. 49, 015106 (2022). https://doi.org/10.1088/1361-6471/ac38c2
I.N. Ghabar, and M.I. Jaghoub, Phys. Rev. C, 91, 064308 (2015). https://doi.org/10.1103/PhysRevC.91.064308
M. Utoom, M.I. Jaghoub, and T. Aqel, Can. J. Phys. 100 , 015106 (2022). https://doi.org/10.1139/cjp-2021-0380
T. Aqel, M.I. Jaghoub, Eur. Phys. J. A, 56, 216 (2020). https://doi.org/10.1140/epja/s10050-020-00226-5
T. Aqel, M.I. Jaghoub, Nucl. Phys. A, 989, 145 (2019). https://doi.org/10.1016/j.nuclphysa.2019.06.005
M.I. Jaghoub, A.E. Lovell, and F.M. Nunes, Phys. Rev. C, 98, 024609 (2018). http://dx.doi.org/10.1103/PhysRevC.98.024609
J. Klug, J. Blomgren, A. Atac, B. Bergenwall, A. Hildebrand, C. Johansson, P. Mermod, et al., Phys. Rev. C, 68, 064605 (2003). https://doi.org/10.1103/PhysRevC.68.064605
H. An, and C. Cai, Phys. Rev. C, 73, 054605 (2006). https://doi.org/10.1103/PhysRevC.73.054605
A. Bohr, and B.R. Mottelson, Kgl. DanskeVidenskab. Selskab, Mat. Fys. Medd. 27(16), (1953). https://cds.cern.ch/record/213298/files/p1.pdf
D.M. Chase, L. Wilets, and A.R. Edmonds, Rotational-Optical Model For Scattering of Neutrons Phys. Rev. 110, 1080 (1985). https://doi.org/10.1103/PhysRev.110.1080
T. Tamura, Rev. Mod. Phys. 37, 679 (1965). https://doi.org/10.1103/RevModPhys.37.679
W.S. Al-Rayashi, and M.I. Jaghoub, Phys. Rev. C, 93, 064311 (2016). https://doi.org/10.1103/PhysRevC.93.064311
B. Buck, Phys. Rev. 130, 712 (1963). https://doi.org/10.1103/PhysRev.130.712
M.P. Fricke, E.E. Gross, B.J. Mortgn, and A. Zucker, Phys. Rev. 156, 1207 (1967). https://doi.org/10.1103/PhysRev.156.1207
S. Chiba, K. Shibata, A. Ichihara, and F.Sh. Sukhovitskii, Journal of nuclear sciences and technology, 44(6), 838 (2007). https://doi.org/10.1080/18811248.2007.9711321
G. Haouat, Ch. Lagrange, R. de Swiniarski, F. Dietrich, J.P. Delaroche, and Y. Patin, Phys. Rev C, 30, 1795 (1984). https://doi.org/10.1103/PhysRevC.30.1795
I.J. Thompson, Coupled Reaction Channels Calculations in Nuclear Physics, Computer Physics Reports, 7, 167 (1988). https://doi.org/10.1016/0167-7977(88)90005-6
A.J. Koning, S. Hilaire, and M.C. Duijvestijn, “TALYS-1.0”, in: Proceedings of the International Conference on Nuclear Data for Science and Technology, edited by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, and S.Leray, (EDP Sciences, Nice, France, 2008), pp. 211-214. https://doi.org/10.1051/ndata:07767
W. Hauser, and H. Feshbach, Phys. Rev. 87, 366 (1952). https://doi.org/10.1103/PhysRev.87.366
S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, and V. Werner, Comput. Phys. Commun. 46, 379 (1987). https://doi.org/10.1016/0010-4655(87)90093-2
G.M. Crawley, and G.T. Garvey, Phys. Rev. 160, 981 (1967). https://doi.org/10.1103/PhysRev.160.981
S. Raman, C.W. Nestor, Jr.S. Kahane, and K.H. Bhatt, Phys. Rev. C, 43, 556 (1991). https://doi.org/10.1103/PhysRevC.43.556
L. Grodzins, Phys. Lett. 2, 88 (1962). https://doi.org/10.1016/0031-9163(62)90162-2
M.P. Fricke, and G.R. Satchler, Phys. Rev. 139, B567 (1965). https://doi.org/10.1103/PhysRev.139.B567
R.A. Zureikat, and M.I. Jaghoub, Nucl. Phys. A, 916, 183 (2013). https://doi.org/10.1016/j.nuclphysa.2013.08.007
EXFOR: Experimental Nuclear Reaction Data, https://www-nds.iaea.org/exfor/exfor.htm
CINDA: Computer Index of Nuclear Reaction Data https://www-nds.iaea.org/exfor/cinda.htm
A. Bonaccorso, and R.J. Charity, Phys. Rev. C, 89, 024619 (2014). https://doi.org/10.1103/PhysRevC.89.024619
R.W. Finlay, J.R.M. Armand, T.S. Cheema, J. Rapaport, and F.S. Dietrich, Phys. Rev. C, 30, 796 (1984). https://doi.org/10.1103/PhysRevC.30.796
G.H. Rawitscher, and D. Lukaszek, Phys. Rev. C, 69, 044608 (2004). https://doi.org/10.1103/PhysRevC.69.044608
Copyright (c) 2025 Waleed Saleh Alrayashi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



