Relativistic Impact on Dust-Electron-Acoustic Solitary Waves in An Unmagnetized Plasma with Nonextensive Ions

Keywords: Dust-electron-acoustic solitary wave, KdV and mKdV equations, Reductive perturbation technique, q-nonextensive ions, Relativistic plasma

Abstract

The nonlinear properties of the dust-electron-acoustic (DEA) solitary waves and their propagating behaviours are theoretically studied in an unmagnetized relativistic plasma model. Such plasma is composed by the weakly relativistic electrons, nonextensive distributed ions and negatively charged immobile dust particles. Staring from a set of unidirectional fluid equations for electrons and nonextensive distribution for ions with Poisson equation, the Korteweg-de Vries (KdV) and modified KdV (mKdV) equations are determined by using the reductive perturbation method technique and their soliton solutions, thus obtained, to analyse the existence regime and basic features of small amplitude DEA solitons. The effects of physical parameters namely ion-to-electron number density ratio (δ), relativistic streaming factor (ν0/c ) and ion nonextensive  parameter (q) on the dynamics of solitary formations are examined in detail. The result shows the existence of both compressive and rarefactive DEA KdV solitons and only compressive DEA mKdV solitons in the range −1 < q < 3, with various δ and ν0/c in the plasma. Additionally, the influences of all the physical parameters on the propagation of DEA solitary waves corresponding to the KdV and mKdV equations are numerically analysed within the paper. The results of this study might help clarify the basic characteristics of nonlinear travelling waves propagating in both laboratory and space plasma as well as astrophysical plasma environments.

Downloads

Download data is not yet available.

References

S. Bansal, and M. Aggarwal, ”Non-planar electron-acoustic waves with hybrid Cairns–Tsallis distribution,” Pramana – J. Phys. 92, 49 (2019). https://doi.org/10.1007/s12043-018-1713-z

H.R. Pakzad, ”Effect of q-nonextensive distribution of electrons on electron acoustic solitons,” Astrophys Space Science, 333, 247–255 (2011). https://doi.org/10.1007/s10509-010-0570-0

H. Demiray, and C. Bayındır, ”A note on the cylindrical solitary waves in an electron-acoustic plasma with vortex electron distribution,” Physics of Plasmas, 22, 092105 (2015). https://doi.org/10.1063/1.4929863

P. Chatterjee, G. Mondal, and C.S. Wong, ”Electron acoustic dressed soliton in quantum plasma,” Indian J. Phys. 87(8), 827–834 (2013). https://doi.org/10.1007/s12648-013-0292-6

J. Goswami, J. Sarkar, S. Chandra, and B. Ghosh, ”Amplitude-modulated electron-acoustic waves with bipolar ions and kappadistributed positrons and warm electrons,” Pramana – J. Phys. 95, 54 (2021). https://doi.org/10.1007/s12043-021-02085-1

S. Chandra, and B. Ghosh, ”Modulational instability of electron-acoustic waves in relativistically degenerate quantum plasma,” Astrophysics and Space Science, 342, 417–424 (2012). https://doi.org/10.1007/s10509-012-1186-3

S. Roy, S. Saha, S. Raut, and A.N. Das, ”Studies on the effect of kinematic viscosity on electron-acoustic cylindrical and spherical solitary waves in a plasma with trapped electrons,” Journal of Applied Mathematics and Computational Mechanics, 20(2), 65-76 (2021). https://doi.org/10.17512/jamcm.2021.2.06

M. Rosenberg, and G. Kalman, ”Dust acoustic waves in strongly coupled dusty plasmas,” Physical Rrview E, 56(6), (1997). https://doi.org/10.1103/PhysRevE.56.7166

H.J. Dehingia, and P.N. Deka, ”Structural variations of dust acoustic solitary waves (DASWs) propagating in an inhomogeneous plasma,” East European Journal of Physics, (1), 19-27 (2023). https://doi.org/10.26565/2312-4334-2023-1-02

N.N. Rao, P.K. Shukla, and M.Y. Yu, ”Dust-acoustic waves in dusty plasmas,” Planetary and space science, 38(4), 543-546 (1990). https://doi.org/10.1016/0032-0633(90)90147-I

A. Barkan, R.L. Merlino, and N. D’angelo, ”Laboratory observation of the dust-acoustic wave mode,” Physics of Plasmas, 2(10), 3563-3565 (1995). https://doi.org/10.1063/1.871121

N. D’Angelo, ”Coulomb solids and low-frequency fluctuations in RF dusty plasmas,” Journal of Physics D: Applied Physics, 28(5), 1009 (1995). https://doi.org/10.1088/0022-3727/28/5/024

R. Jahangir, and W. Masood, ”Interaction of electron acoustic waves in the presence of superthermal electrons in terrestrial magnetosphere,” Physics of Plasmas, 27, 042105 (2020). https://doi.org/10.1063/1.5143400

A.M. El-Hanbaly, E.K.El-Shewy, A. Elgarayhi, and A.I. Kassem, ”Propagation of Electron Acoustic Soliton, Periodic and Shock Waves in Dissipative Plasma with a q-Nonextensive Electron Velocity Distribution,” Communications in Theoretical Physics, 64(5), 529–536 (2015). https://doi.org/10.1088/0253-6102/64/5/529

S. Chandra, and B. Ghosh, ”Modulational instability of electron-acoustic waves in relativistically degenerate quantum plasma,” Astrophys. Space Sci. 342, 417–424 (2012). https://doi.org/10.1007/s10509-012-1186-3

H. Asgari, S.V. Muniandy, and C.S. Wong, ”Dust-acoustic solitary waves in dusty plasmas with non-thermal ions,” Physics of Plasmas, 20, 023705 (2013). https://doi.org/10.1063/1.4793743

A.M. El-Hanbaly, E.K. El-Shewy, A.I. Kassem, and H.F. Darweesh, ”Nonlinear Electron Acoustic Waves in Dissipative Plasma with Superthermal Electrons,” Applied Physics Research, 8(1), 1916-9639 (2016). http://dx.doi.org/10.5539/apr.v8n1p64

S.V. Singh, and G.S. Lakhina, ”Generation of electron-acoustic waves in the magnetosphere,” Planetary and Space Science, 49(1), 107-114 (2001). https://doi.org/10.1016/S0032-0633(00)00126-4

S. Bansal, T.S. Gill, and M.Aggarwal, ”Oblique modulation of electron acoustic waves in nonextensive plasm,” Physics of Plasmas, 26, 072116 (2019). https://doi.org/10.1063/1.5094245

A.A. Mamun, ”Dust–electron-acoustic shock waves due to dust charge fluctuation,” Physics Letters A, 372, 4610–4613 (2008). https://doi.org/10.1016/j.physleta.2008.04.038

R. Jahangir, W. Masood, and H. Rizvi, ”Interaction of electron acoustic solitons in auroral region for an electron beam plasma system,” Frontiers in Astronomy and Space Sciences, 9, 1-13 (2022). https://doi.org/10.3389/fspas.2022.978314

S. Das,and D.C. Das, ”Higher-order nonlinear dust ion acoustic (DIA) solitary waves in plasmas with weak relativistic effects in electrons and ions,” The European Physical Journal D, 77, 39 (2023). https://doi.org/10.1140/epjd/s10053-023-00621-9

S. Das, ”Weak Relativistic Effect in the Formation of Ion-Acoustic SolitaryWaves in Dusty Plasma,” IEEE Transactions on Plasma Science, 50(7), 2225-2229 (2022). https://doi.org/10.1109/TPS.2022.3181149

T.F. Rahman, S. Tarofder, M.M. Orani, J. Akter, and A.A. Mamun, ”(3+ 1)-dimensional cylindrical dust ion-acoustic solitary waves in dusty plasma,” Results in Physics, 53, 106907 (2023). https://doi.org/10.1016/j.rinp.2023.106907

S. Benaiche, M. Bacha, A. Merriche, and R. Amour, ”Effect of Tsallis–Gurevich distributed ions on nonlinear dust-acoustic oscillations in collisionless nonextensive plasma,” Contributions to Plasma Physics, 63(2), e202200132 (2023). https://doi.org/10.1002/ctpp.202200132

R. Amour, and M. Tribeche, ”Semi-analytical study of variable charge dust acoustic solitary waves in a dusty plasma with a q-nonextensive ion velocity distribution,” Communications in Nonlinear Science and Numerical Simulation, 16(9), 3533-3539 (2011). https://doi.org/10.1016/j.cnsns.2010.12.037

M. Tribeche, and A. Merriche, ”Nonextensive dust-acoustic solitary waves,” Physics of Plasmas, 18(3), 034502 (2011). https://doi.org/10.1063/1.3561789.

S. Tarofder, A. Mannan, and A.A. Mamun, ”Cylindrical Three Dimensional Dust–Ion–Acoustic Solitary Waves in Nonthermal Plasmas,” Plasma Physics Reports, 49, 1014–1022 (2023). https://doi.org/10.1134/S1063780X23600354

S. Bhowmick, and B. Sahu, ”Propagation properties of dust-electron-acoustic waves in weakly magnetized dusty nonthermal plasmas,” Contributions to Plasma Physics, 61(1), e202000091 (2021). https://doi.org/10.1002/ctpp.202000091

B.C. Kalita, and S. Das, ”Dust ion acoustic (DIA) solitary waves in plasmas with weak relativistic effects in electrons and ions,”Astrophys. Space Sci. 352, 585–592 (2014). https://doi.org/10.1007/s10509-014-1954-3

B.C. Kalita, and M. Deka, ”Investigation of solitary waves in warm plasma for smaller order relativistic effects with variable pressures and inertia of electrons,” Astrophys. Space Sci. 343(2), 609–614 (2013). https://doi.org/10.1007/s10509-012-1261-9

R. Das, and K.C. Nath, ”Modified Korteweg-de Vries solitons on dust ion acoustic waves in a warm plasma with electrons’ drift motion,” Advances and Applications in Fluid Mechanics, 19(3), 541-553 (2016). http://dx.doi.org/10.17654/FM019030541

B.C. Kalita, R. Das, and H.K. Sarmah, ”Weakly relativistic solitons in a magnetized ion-beam plasma in presence of electron inertia,” Physics of Plasmas, 18(1), 012304 (2011). https://doi.org/10.1063/1.3536428

B.C. Kalita, and M. Choudhury, ”The role of unidirected relativistic electrons with inertia in the formation of weakly relativistic ion acoustic solitons in magnetized plasma,” Astrophys. Space Sci. 346, 375–382 (2013). https://doi.org/10.1007/s10509-013-1468-4

B.C. Kalita, and R. Kalita, ”Implicit role of Cairns distributed ions and weak relativistic effects of electrons in the formation of dust acoustic waves in plasma,” Journal of Plasma Physics, 82(2), 905820201 (2016). https://doi.org/10.1017/S0022377816000167

B.C. Kalita, and S. Das, ”Comparative study of dust ion acoustic Korteweg–de Vries and modified Korteweg–de Vries solitons in dusty plasmas with variable temperatures,” Journal of Plasma Physics, 83(5), 905830502 (2017). https://doi.org/10.1017/S0022377817000721

A. Renyi, ”On a new axiomatic theory of probability,” Acta Mathematica Academiae Scientiarum Hungarica, 6, 285-335 (1955). https://doi.org/10.1007/BF02024393

C. Tsallis, ”Possible generalization of Boltzmann-Gibbs statistics,” Journal of statistical physics, 52, 479-487 (1988). https://doi.org/10.1007/BF01016429

U.S. Kumar, A. Saha, and P. Chatterjee, ”Bifurcations of dust ion acoustic travelling waves in a magnetized dusty plasma with a q-nonextensive electron velocity distribution,” Physics of Plasmas, 20(2), 022111 (2013). https://doi.org/10.1063/1.4791660

A.A. Mahmoud, E.M. Abulwafa, A.A.F. Al-Araby, and A.M. Elhanbaly, ”Plasma parameters effects on dust acoustic solitary waves in dusty plasmas of four components,” Advances in Mathematical Physics, 1, 7935317 (2018). https://doi.org/10.1155/2018/7935317

F. Araghi, S. Miraboutalebi, and D. Dorranian, ”Effect of variable dust size, charge and mass on dust acoustic solitary waves in nonextensive magnetized plasma,” Indian Journal of Physics, 94, 547-554 (2020). https://doi.org/10.1007/s12648-019-01488-6

P. Eslami, M. Mottaghizadeh, and H.R. Pakzad, ”Nonplanar dust acoustic solitary waves in dusty plasmas with ions and electrons following a q-nonextensive distribution,” Physics of Plasmas, 18(10), 102303 (2011). https://doi.org/10.1063/1.3642639

A. Saha, and P. Chatterjee, ”Propagation and interaction of dust acoustic multi-soliton in dusty plasmas with q-nonextensive electrons and ions,” Astrophysics and Space Science, 353, 169-177 (2014). https://doi.org/10.1007/S10509-014-2028-2

F.J. Lin, Z.H. Chen, X.Q. Li, J.J. Liao, and Z. Yun, ”Generation and evolution of magnetic field in the relativistic plasma following q-nonextensive distribution,” Physics of Plasmas, 24(2), 022120 (2017). https://doi.org/10.1063/1.4976981

Published
2025-06-09
Cited
How to Cite
Khanam, R., Barman, S. N., & Rahman, M. (2025). Relativistic Impact on Dust-Electron-Acoustic Solitary Waves in An Unmagnetized Plasma with Nonextensive Ions. East European Journal of Physics, (2), 74-83. https://doi.org/10.26565/2312-4334-2025-2-08