Barrow Holographic Dark Energy within Saez-Ballester Scalar Field and Lyra Geometry
Abstract
This paper investigates the dynamical behavior of hypersurface homogeneous spacetime cosmological models within the framework of the scalar-tensor theory of gravitation formulated by Saez and Ballester (Phys. Lett. A, 113, 467 1986) in Lyra geometry. We present two cosmological models derived from this theory by solving the field equations using: (i) Special law of variation for Hubble’s parameter and (ii) the proportional relationship between the shear scalar σ2 and scalar expansion θ as described by Collins et al. (Gen. Rel. Grav. 12, 805 1980). For each model, we evaluate key dynamical parameters, including the equation of state (EoS) parameter, the deceleration parameter, the statefinder parameter, and the total energy density parameter of dark energy. Additionally, we determine the scalar field in both models. Our findings indicate that these models describe an accelerated expansion of the universe, with theoretical results showing reasonable agreement with observational data.
Downloads
References
A. G. Riess, A. V. Filippenko, P. Challis, et al., ”Observational evidence from supernovae for an accelerating universe and a cosmological constant,” The Astronomical Journal, 116(3), 1009 (1998). https://doi.org/10.1086/300499
S. Perlmutter, G. Aldering, M.D. Valle, et al., ”Discovery of a supernova explosion at half the age of the universe,” Nature, 391(6662), 51–54 (1998). https://doi.org/10.1038/34124
D.N. Spergel, L. Verde, H.V. Peiris, et al., ”First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters,” The Astrophysical Journal Supplement Series, 148(1), 175 (2003). https://doi.org/10.1086/377226
U. Seljak, A. Makarov, P. McDonald, et al., ”Cosmological parameter analysis including SDSS Lyman α forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy,” Physical Review D—Particles Fields, Gravitation, and Cosmology, 71(10), 103 515 (2005). https://doi.org/10.1103/PhysRevD.71.103515
C.L. Bennett, R.S. Hill, G. Hinshaw, M.R. Nolta, N. Odegard, L. Page, D.N. Spergel, et al., ”First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Foreground emission,” The Astrophysical Journal Supplement Series, 148(1), 97 (2003). https://doi.org/10.1086/377252
M. Tegmark, M.R. Blanton, M.A. Strauss, et al., The three-dimensional power spectrum of galaxies from the Sloan Digital Sky Survey,” The Astrophysical Journal, 606(2), 702 (2004). https://doi.org/10.1086/382250
D.J. Eisenstein, I. Zehavi, D.W. Hogg, et al., ”Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies,” The Astrophysical Journal, 633(2), 560 (2005). https://doi.org/10.1086/468499
C.R. Contaldi, H. Hoekstra, and A. Lewis, ”Joint cosmic microwave background and weak lensing analysis: Constraints on cosmological parameters,” Physical Review Letters, 90(22), 221303 (2003). https://doi.org/10.1103/PhysRevLett.90.221303
R.R. Caldwell, R. Dave, and P.J. Steinhardt, ”Cosmological imprint of an energy component with general equation of state,” Physical Review Letters, 80(8), 1582 (1998). https://doi.org/10.1103/PhysRevLett.80.1582
R.R. Caldwell, ”A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state,” Physics Letters B, 545(1-2), 23–29 (2002). https://doi.org/10.1016/S0370-2693(02)02589-3
B. Feng, X. Wang, and X. Zhang, ”Dark energy constraints from the cosmic age and supernova,” Physics Letters B, 607(1-2), 35–41 (2005). https://doi.org/10.1016/j.physletb.2004.12.045
M. Setare, ”The holographic dark energy in non-flat Brans–Dicke cosmology,” Physics Letters B, 644(2-3), 99–103 (2007). https://doi.org/10.1016/j.physletb.2006.11.070
M. Malekjani, T. Naderi, and F. Pace, ”Effects of ghost dark energy perturbations on the evolution of spherical overdensities,” Monthly Notices of the Royal Astronomical Society, 453 (4), 4148–4158 (2015). https://doi.org/10.1093/mnras/stv1900
T. Chiba, ”Tracking k-essence,” Physical Review D, 66(6), 063514 (2002). https://doi.org/10.1103/PhysRevD.66.063514
S. Nojiri, and S.D. Odintsov, ”Quantum de Sitter cosmology and phantom matter,” Physics Letters B, 562(3-4), 147–152 (2003). https://doi.org/10.1016/S0370-2693(03)00439-6
A. Kamenshchik, U. Moschella, and V. Pasquier, ”An alternative to quintessence,” Physics Letters B, 511(2-4), 265–268 (2001). https://doi.org/10.1016/S0370-2693(01)00571-8
K. Kleidis, and N.K. Spyrou, ”Polytropic dark matter flows illuminate dark energy and accelerated expansion,” Astronomy & Astrophysics, 576, A23 (2015). https://doi.org/10.1051/0004-6361/201423759
M. Li, ”A model of holographic dark energy,” Physics Letters B, 603(1-2), 1–5 (2004). https://doi.org/10.1016/j.physletb.2004.10.014
S. Thomas, ”Holography stabilizes the vacuum energy,” Physical Review Letters, 89, 081301 (2002). https://doi.org/10.1103/PhysRevLett.89.081301
P. Horava, and D. Minic, ”Probable values of the cosmological constant in a holographic theory,” Physical Review Letters, 85(8), 1610 (2000). https://doi.org/10.1103/PhysRevLett.85.1610
C. Brans, and R.H. Dicke, ”Mach’s principle and a relativistic theory of gravitation,” Physical Review, 124(3), 925 (1961). https://doi.org/10.1103/PhysRev.124.925
D. Saez, and V. Ballester, ”A simple coupling with cosmological implications,” Physics Letters A, 113(9), 467–470 (1986). https://doi.org/10.1016/0375-9601(86)90035-5
D. Saez, ”Variational formulation of two scalar-tetradic theories of gravitation,” Physical Review D, 27, 2839-2847 (1983). https://link.aps.org/doi/10.1103/PhysRevD.27.2839
R. Naidu, Y. Aditya, K.D. Raju, T. Vinutha, and D. Reddy, ”Kaluza-Klein FRW dark energy models in Saez-Ballester theory of gravitation,” New Astronomy, 85, 101564 (2021). https://doi.org/10.1016/j.newast.2021.101564
A. Oliveros, M. Sabogal, and M.A. Acero, ”Barrow holographic dark energy with Granda–Oliveros cutoff,” The European Physical Journal Plus, 137(7), 1–11 (2022). https://doi.org/10.1140/epjp/s13360-022-01612-5
Barrow holographic dark energy within Saez-Ballester Scalar Field and Lyra Geometry
E.N. Saridakis, ”Barrowholographic dark energy,” PhysicalReviewD, 102(12), 123525 (2020). https://doi.org/10.1103/PhysRevD.102.123525
J.D. Barrow, ”The area of a rough black hole,” Physics Letters B, 808, 643 (2020). https://doi.org/10.1016/j.physletb.2020.135643
J.D. Bekenstein, ”Black holes and entropy,” Physical Review D, 7(8), 2333 (1973). https://doi.org/10.1103/PhysRevD.7.2333
S.W. Hawking, ”Particle creation by black holes,” Communications in Mathematical Physics, 43(3), 199–220 (1975). https://doi.org/10.1007/BF02345020
L. Granda, and A. Oliveros, ”Infrared cut-off proposal for the holographic density,” Physics Letters B, 669(5), 275–277 (2008). https://doi.org/10.1016/j.physletb.2008.09.065
M. Berman, ”A special law of variation for Hubble’s parameter,” Nuovo Cimento B Serie, 74, 182–186 (1983).
C.B. Collins, E.N. Glass, and D.A. Wilkinson, ”Exact spatially homogeneous cosmologies,” General Relativity and Gravitation, 12(10), 805–823 (1980). https://doi.org/10.1007/BF00763318
Copyright (c) 2025 Vilas Raut, Dhiraj Rautkar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



