A New Approach of Obtaining Sodium Metasilicate from Dealuminated Kaolin for The Synthesis of Amorphous Silicon Dioxide Nanoparticles

  • D.B. Puzer Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana https://orcid.org/0009-0001-4470-681X
  • A.C.K. Amuzu Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
  • A. Abandoh Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana https://orcid.org/0009-0004-2465-8277
  • I. Nkrumah Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana https://orcid.org/0000-0003-4030-7931
  • B. Kwakye-Awuah Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana https://orcid.org/0000-0002-8842-681X
  • F.K. Ampong Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana https://orcid.org/0000-0003-3562-8183
  • R.K. Nkum Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana https://orcid.org/0000-0003-0404-760X
  • F. Boakye Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
Keywords: Amorphous silica, Sol-gel synthesis, Nanoparticles, Characterization, Metakaolin, Sodium metasilicate

Abstract

Silicon Dioxide nanoparticles of high purity was synthesized using a novel technique of obtaining sodium metasilicate from de-aluminated metakaolin. The process involved taking the de-aluminated metakaolin through several recrystallization steps to form sodium metasilicate. This was then converted into silicon dioxide nanoparticles using the sol gel technique. The nanoparticles were studied by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, thermogravimetric analysis, Fourier transform infrared spectroscopy and UV-visible optical absorption spectroscopy. The results from all the characterization techniques confirmed that the synthesized product was amorphous silicon dioxide nanoparticles with a high level of purity. This study gives an alternate pathway for obtaining sodium metasilicate from de-aluminated metakaolin for the synthesis of amorphous silicon dioxide nanoparticles for industrial applications.

Downloads

Download data is not yet available.

References

R.S. Dubey, Y.B.R.D. Rajesh, and M.A. Mor, Materials Today, 2 (4-5), 3575 (2015). https://doi.org/10.1016/j.matpr.2015.07.098

M. Unasir, T. Riwikantoro, M.O.Z. Ainuri, and D. Arminto, Materials Science, 33 (1), 47 (2015). https://doi.org/10.1515/msp-2015-0008

H. Lin, M. Yang, X. Ru, G. Wang, S. Yin, F. Peng, C. Hong, et al., Nature Energy, 8(8), 789 (2023). https://doi.org/10.1038/s41560-023-01255-2

C.P. Faizul, C. Abdullah, and B. Fazlul, Advanced Materials Research, 626, 997 (2013). https://doi.org/10.4028/www.scientific.net/AMR.626.997

F. Akhter, A. Atta, R. Mahmood, N. Abbasi, S. Ahmed, W. Mukhtiar, and A. Mallah, Silicon, 14 8295 (2022). https://doi.org/10.1007/s12633-021-01611-5

T. Mizutani, K. Arai, M. Miyamoto, and Y. Kimura, Progress in Organic Coatings, 55(3), 276 (2006). https://doi.org/10.1016/j.porgcoat.2005.12.001

S.S. Owoeye, S.M. Abegunde, and B. Oji, Nano-Structures & Nano-Objects, 25, 100625 (2021). https://doi.org/10.1016/j.nanoso.2020.100625

M. Heikal, H. El-didamony, T.M. Sokkary, and I.A. Ahmed, Construction and Building Materials, 38, 1180 (2013). https://doi.org/10.1016/j.conbuildmat.2012.09.069

N. Meftah, A. Hani, and A. Merdas, Chemistry Africa, 6(6), 3039 (2023). https://doi.org/10.1007/s42250-023-00688-2

D. Bokov, A.T. Jalil, S. Chupradit, W. Suksatan, M.J. Ansari, I.H. Shewael, G.H. Valley, et al., Advances in Materials Science and Engineering, 2021(1), 5102014 (2021). https://doi.org/10.1155/2021/5102014

F. Farirai, M. Ozonoh, T.C. Aniokete, O. Eterigho-ikelegbe, M. Mupa, and B. Zeyi, International Journal of Sustainable Engineering, 14(1), 57 (2021). https://doi.org/10.1080/19397038.2020.1720854

V. Zarei, M. Mirzaasadi, A. Davarpanah, A. Nasiri, and M. Valizadeh, Processes, 9(2), 334 (2021). https://doi.org/doi.org/10.3390/pr9020334

F. Qi, G. Zhu, and Y. Zhang, X. Hou, S. Li, J. Zhang and H. Li, Journal of American Ceramic Society, 104(1), 535 (2020). https://doi.org/10.1111/jace.17440

P.S. Utama, R. Yamsaengsung, and C. Sangwichien, Brazilian Journal of Chemical Engineering, 36(1), 523 (2019). https://doi.org/10.1590/0104-6632.20190361s20170458

G.J. Croissant, K.S. Butler, J.I. Zink, and C.J. Brinker, Nature Reviews Materials, 5(12), 886 (2020). https://doi.org/10.1038/s41578-020-0230-0

Z. Li, D. Wang, F. Lv, J. Chen, C. Wu, Y. Li, J. Shen, and Y. Li, Materials, 15(3), 970 (2022). https://doi.org/10.3390/ma15030970

S. Rezaei, I. Manoucheri, R. Moradian, and B. Pourabbas, Chemical Engineering Journal, 252, 11 (2014). https://doi.org/10.1016/j.cej.2014.04.100

U. Zulfiqar, T. Subhani, and S.W. Husain, Journal of Asian Ceramic Societies, 4(1), 91 (2016). https://doi.org/10.1016/j.jascer.2015.12.001

J. Tao, Cement and Concrete Research, 35(10), 1943 (2005). https://doi.org/10.1016/j.cemconres.2005.07.004

C.P. Faizul, C. Abdullah, and B. Fazlul, Advanced Materials Research, 626, 997 (2013). https://doi.org/10.4028/www.scientific.net/AMR.626.997

N.N. Maseko, D. Enke, S.A. Iwarere, O.S. Oluwafemi, and J. Pocock, Sustainability, 15(5), 4626 (2023). https://doi.org/10.3390/su15054626

G. Zhu, H. Li, X. Wang, S. Li, X. Hou, W. Wu, and Q. Tang, The American Ceramic Society, 99(8), 2778 (2016). https://doi.org/10.1111/jace.14242

P. Sharma, J. Prakash, R. Kaushal, Environmental Research, 212, 113328 (2022). https://doi.org/10.1016/j.envres.2022.113328

J.A. Adebisi, J.O. Agunsoye, I.I. Ahmed, S.A. Bello, M. Haris, M.M. Ramakokovhu, and S.B. Hassan, Materials Today: Proceedings, 38, 669 (2020). https://doi.org/10.1016/j.matpr.2020.03.658

G. Falk, G.P. Shinhe, L.B. Teixeira, E.G. Moraes, and A.P. Navaes de Oliveira, Ceramics International, 45(17), 21618 (2019). https://doi.org/10.1016/j.ceramint.2019.07.157

P.E. Imoisili, K.O. Ukoba, and T. Jen, Boletín de La Sociedad Española de Cerámica y Vidrio, 59(4), 159 (2020). https://doi.org/10.1016/j.bsecv.2019.09.006

E. Rafiee, S. Shahebrahimi, M. Feyzi, and M. Shaterzadeh, International Nano Letters, 2, 29 (2012). https://doi.org/10.1186/2228-5326-2-29

G. Tchanang, C. Njiomou, C. Fon, D. Laure, M. Moukouri, and P. Blanchart, Applied Clay Science, 207, 106087 (2021). https://doi.org/10.1016/j.clay.2021.106087

V. Vaibhav, U. Vijayalakshmi, and S.M. Roopan, Spectrochimica Acta Part A: Molecular And Biomolecular Spectroscopy, 139, 515 (2015). https://doi.org/10.1016/j.saa.2014.12.083

B. Kwakye, A. Eric, K. Kyeh, A. Baah, S. Ntiri, I. Nkrumah, and E.V. Kiti, Journal of Thermal Analysis and Calorimetry, 146, 1991 (2021). https://doi.org/10.1007/s10973-021-10710-9

S.G. Bawa, A.S. Ahmed, and P.C. Okonkwo, Nigerian Journal of Basic And Applied Science, 24(2), 66 (2016). https://doi.org/10.4314/njbas.v24i2.10

A.B. Eldeeb, V.N. Brichkin, R.V. Kurtenkov, and I.S. Bormotov, Applied Clay Science, 172, 146 (2018). https://doi.org/10.1016/j.clay.2019.03.008

O. Weichold, B. Tigges, M. Bertmer, and M. Möller, Journal of Colloid and Interface Science, 324(1-2), 105 (2008). https://doi.org/10.1016/j.jcis.2008.04.060

A. Boualem, L. Leonite, S.A.G. Lopera, and S. Hamzaoui, Silicon, 14(10), 5231 (2022). https://doi.org/10.1007/s12633-021-01306-x

N. Meftah, A. Hani, and A. Merdas, Chemistry Africa, 6, 3039 (2023). https://doi.org/10.1007/s42250-023-00688-2

A.B. Prasetyo, I. Agency, M. Handayani, and E. Febrian, Journal of Ceramic Processing Research, 24(1), 103 (2023). https://doi.org/10.36410/jcpr.2023.24.1.103

N. K. Mohd, N. Nur, A. Nik, and A.A. Azmi, American Institute of Physics, 1885(1), 020123 (2017). https://doi.org/10.1063/1.5002317

H. El-Didamony, E. El-Fadaly, A.A. Amer, and I.H. Abazeed, Boletín de La Sociedad Española de Cerámica y Vidrio, 9(1), 31 (2020). https://doi.org/10.1016/j.bsecv.2019.06.004

Q. Han, P. Zhang, J. Wu, Y. Jing, D. Zhang, and T. Zhang, Nanotechnology Reviews, 11(1), 1478 (2022). https://doi.org/10.1515/ntrev-2022-0092

R.K. Kankala, Y. Han, J. Na, C. Lee, Z. Sun, S. Wang, T. Kimura, et al., Advanced Materials, 32(23), 1907035 (2020). https://doi.org/10.1002/adma.201907035

A.Y. Oral, E. Mensur, M.H. Aslan, and E. Basaran, Materials Chemistry and Physics, 83(1), 140 (2004). https://doi.org/10.1016/j.matchemphys.2003.09.015

M.F. Anuar, Y.W. Fen, M.H.M. Zaid, K.A. Matori, and R.E.M. Khaidir, Applied Sciences, 10(6) 2128 (2020). https://doi.org/10.3390/app10062128

Published
2025-06-09
Cited
How to Cite
Puzer, D., Amuzu, A., Abandoh, A., Nkrumah, I., Kwakye-Awuah, B., Ampong, F., Nkum, R., & Boakye, F. (2025). A New Approach of Obtaining Sodium Metasilicate from Dealuminated Kaolin for The Synthesis of Amorphous Silicon Dioxide Nanoparticles. East European Journal of Physics, (2), 313-319. https://doi.org/10.26565/2312-4334-2025-2-38