Investigation of Morphological and Optical Properties of LiNbO3 and LiNbO3:Fe 0.03 wt.% Crystals

  • Murodjon A. Yuldoshev University of business and science, Namangan, Uzbekistan https://orcid.org/0000-0002-9722-9439
  • Zakirjan T. Azamatov Institute of Semiconductor Physics and Microelectronics, National University of Uzbekistan, Tashkent, Uzbekistan https://orcid.org/0000-0001-7074-9437
  • Abror B. Bakhromov bInstitute of Semiconductor Physics and Microelectronics, National University of Uzbekistan, Tashkent, Uzbekistan https://orcid.org/0000-0001-8148-2467
  • Mira R. Bekchanova University of Public Security of the Republic of Uzbekistan, Tashkent, Uzbekistan
Keywords: Lithium niobate, AFM, Holography, Optical absorption

Abstract

This article is devoted to the morphological and optical properties of the photorefractive crystal LiNbO3 and LiNbO3:Fe 0.03 wt.%. According to it, the surface morphology of the samples was studied using an atomic force microscope (AFM). In addition, ordinary and extraordinary refractive indices of the LiNbO3 crystal were calculated using empirical formulas. The results of the diffraction efficiency of the LiNbO3:Fe 0.03 wt.% crystal for He-Ne and He-Cd lasers are presented.

Downloads

Download data is not yet available.

References

V.A. Barachevsky, “The current status of the development of light-sensitive media for holography (a review),” Opt. Spectrosc. 124, 373–407 (2018). http://dx.doi.org/10.1134/S0030400X18030062

Sh.B. Utamuradova, Z.T. Azamatov, M.A. Yuldoshev, N.N. Bazarbayev, A.B. Bakhromov, East Eur. J. Phys. (4), 147 (2023), https://doi.org/10.26565/2312-4334-2023-4-15

Sh.B. Utamuradova, Z.T. Azamatov, A.I. Popov, M.R. Bekchanova, M.A. Yuldoshev, A.B. Bakhromov, East Eur. J. Phys. (3), 278 (2024), https://doi.org/10.26565/2312-4334-2024-3-27

L. Dai, C. Tan, L. Wang, X. Han, C. Liu, and Y. Xu, “Investigation on nonvolatile holographic storage properties in Hf:Ru:Fe:LiNbO3 crystals as a function of Li composition,” Journal of Alloys and Compounds, 753, 407 (2018). https://doi.org/10.1016/j.jallcom.2018.04.201

T. Volk, М. Wohlecke, “Lithium niobate,” in: Defects, Photorefraction and Ferroelectric Switching, (Springer, Berlin, 2008).

M.H. Yükselici, D. Bulut, B.C. Ömür, A.A. Bozkurt, and C. Allahverdi, “Optical properties of iron-doped lithium niobate crystal depending on iron content and temperature,” Phys. Status Solidi B, 251, 1265–1269 (2014). http://dx.doi.org/10.1002/pssb.201451071

A.V. Syuy, N.V. Sidorov, M.N. Palatnikov, N.A. Teplyakova, D.S. Shtarev, and N.N. Prokopiv, “Optical properties of lithium niobate crystals,” Optik, 156, 239 (2018). https://doi.org/10.1016/j.ijleo.2017.10.136

N.V. Sidorov, L. A. Bobreva, N. Teplyakova, and G.M. Palatnikov, “Defect Complexes and Optical Properties of Doubly Doped Lithium Niobate Crystals,” Inorganic Materials, 54(10), 1009-1012 (2018). http://dx.doi.org/10.1134/S0020168518100151

E.M. de Miguel Sanz, M. Carrascosa, and L. Arizmendi. “Effect of the oxidation state and hydrogen concentration on the lifetime of thermally fixed holograms in LiNbO3:Fe,” Physical Review B, 65(16), (2002). http://dx.doi.org/10.1103/PhysRevB.65.165101

Sh.B. Utamuradova, Z.T. Azamatov, M.A. Yuldoshev, “Optical Properties of ZnO–LiNbO3 and ZnO–LiNbO3:Fe Structures,” Russian Microelectronics, 52(Suppl. 1), S99-S103 (2023). https://doi.org/110.1134/S106373972360022X

Z.T. Azamatov, M.A. Yuldoshev, N.N. Bazarbayev, and A.B. Bakhromov, Physics AUC, 33, 139 (2023). https://cis01.central.ucv.ro/pauc/vol/2023_33/13_PAUC_2023_139_145.pdf

Z.T. Azamatov, Sh.B. Utamuradova, M.A. Yuldoshev, and N.N. Bazarbaev. “Some properties of semiconductor-ferroelectric structures,” East Eur. J. Phys. (2), 187-190. (2023), https://doi.org/10.26565/2312-4334-2023-2-19

Y.-Y. Li, H.-L. Chen, G.J. Chen, and W.-S. Hwang. “Investigation of the Defect Structure of Congruent and Fe-Doped LiNbO3 Powders Synthesized by the Combustion Method,” Materials, 10(4), 380. (2017). http://dx.doi.org/10.3390/ma10040380

R. Inoue, S. Takahashi, Y. Kitanaka, and T. Oguchi, “Enhanced photovoltaic currents in strained Fe-doped LiNbO3 films,” Physica Status Solidi (A) Applications and Materials, 212(12), (2015). http://dx.doi.org/10.1002/pssa.201532398

Y. Noguchi, R. Inoue, and M. Miyayama, “Electronic Origin of Defect States in Fe-Doped LiNbO3 Ferroelectrics,” Advances in Condensed Matter Physics, 2016(4), 1-10. (2016). http://dx.doi.org/10.1155/2016/2943173

A.S. Pritulenko, A.V. Yatsenko, and S.V. Yevdokimov, “Analysis of the nature of electrical conductivity in nominally undoped LiNbO3 crystals,” Crystallogr. Rep. 60, 267–272 (2015). https://doi.org/10.1134/S1063774515020224

Y.-Y. Li, H.-L. Chen, G.-J. Chen, C.-L. Kuo, P.-H. Hsieh, and W.-S. Hwang, “Investigation of the defect structure of congruent and Fe-doped LiNbO3 powders synthesized by the combustion method,” Materials, 10(4), 380 (2017). https://doi.org/10.3390/ma10040380

H. Kogelik, “Coupled wave theorу for thick hologram grating,” The Bell System Technical Journal, 48(9), 2909-2947 (1969). http://users.ntua.gr/eglytsis/IO/Kogelnik_BSTJ_1969.pdf

M.N. Palatnikov, O.V. Makarova, and N.V. Sidorov, “Growth and technological defects in lithium niobate crystals of various chemical compositions,” Federal Research Center KSC RAS. pp. 89, (2018).

D.K. Ghosh, L.K. Samanta, and G.C. Bhar, “A simple model for evaluation of refractive indices of some binary and ternary mixed crystals,” Infrared Phys. 24, 43–47 (1984). https://doi.org/10.1016/0020-0891(84)90046-0

F.S. Chen, “Opticallу induced change of refractive indices in LiNbO3,” J. Appl. Phуs. 40, 3389-3393 (1969). https://doi.org/10.1063/1.1658195

Published
2024-12-08
Cited
How to Cite
Yuldoshev, M. A., Azamatov, Z. T., Bakhromov, A. B., & Bekchanova, M. R. (2024). Investigation of Morphological and Optical Properties of LiNbO3 and LiNbO3:Fe 0.03 wt.% Crystals. East European Journal of Physics, (4), 250-255. https://doi.org/10.26565/2312-4334-2024-4-25

Most read articles by the same author(s)