Evolution of Solitary Wave in a Collisionless Quantized Magneto-Plasma with Ion Pressure Anisotropy
Abstract
TThis paper presents a comprehensive study in a collisionless plasma composed of charged state of heavy positive ion and light positive as wel as negative ion. By deriving the Korteweg-de Vries (KdV) equation and by using its standard solution we analyze the characteristics of the solitary profile under varying parameters. We found that the solution gives both rarefactive and compressive soliton. The compressive structures are formed for the slow mode, while rarefactive solitary structures are formed for the fast mode. Furthermore, with the application of planar dynamical systems bifurcation theory, the phase portraits have been analyzed. This dynamical system analysis allowed us to extract important information on the stability of these structures as represented by the KdV equation.
Downloads
References
T. Mohsenpoura, H. Ehsanib, and M. Behzadipourc, ”Ion-acoustic solitons in negative ion plasma with relativistic degenerate electrons and positrons,” Waves in Random and Complex Media, 34, 845-857 (2024). https://doi.org/10.1080/17455030.2021.1919338
H.Washimi, and T. Taniuti, ”Propagation of ion-acoustic solitary waves of small amplitude,” Physical Review Letters, 17, 996 (1966). https://doi.org/10.1103/PhysRevLett.17.996
B.D. Fried, R.B. White, and T.K. Samec, ”Ion acoustic waves in a multi-ion plasma,” Physics of Fluids, 14, 2388 (1971). https://doi.org/10.1063/1.1693346
N. Nakamura, M. Nakamura, and T. Itoh, ”Observation of two ion-acoustic waves in an argon-helium plasma,” Physical Review Letters, 37, 209–212 (1976). https://doi.org/10.1103/PHYSREVLETT.37.209
M.Q. Tran, and S. Coquerand, ”Propagation of argon- and helium-ion acoustic modes in an argon helium plasma,” Physical Review A, 14, 2301–2306 (1976). https://doi.org/10.1103/PhysRevA.14.2301
M.Q. Tran, ”Ion acoustic solitons in a plasma: a review of their experimental properties and related theories,” Physica Scripta, 20, 317–327 (1979). https://doi.org/10.1088/0031-8949/20/3-4/004
R.B. White, B.D. Fried, and F.V. Coroniti, ”Structure of ion acoustic solitons and shock waves in a two component plasma,” Physics of Fluids, 15, 1484-1490 (1972). https://doi.org/10.1063/1.1694112
S. Chandrasekhar, ”The density of white dwarf stars,” Philosophical magazine letters, 11, 592-596 (1982). https://doi.org/10.1080/14786443109461710
S. Chandrasekhar, ”The Maximum Mass of Ideal White Dwarfs,” The Astrophysical Journal, 74, 81 (1931). https://doi.org/10.1086/143324
H.M. Van Horn, ”Dense Astrophysical Plasmas,” Science, 252, 384-389 (1991). https://doi.org/10.1126/science.252.5004.384
S. Jahan, E. Booshrat, Sharmin., N.A. Chowdhury, A. Mannan, T.S. Roy, and A.A. Mamun, Electrostatic Ion-Acoustic Shock Waves in a Magnetized Degenerate Quantum Plasma,” Plasma, 4, 426–434 (2021). https://doi.org/10.3390/plasma4030031
M.R. Hossen, and A.A. Mamun, ”Nonplanar shock excitations in a four component degenerate quantum plasma: the effects of various charge states of heavy ions,” Plasma Science and Technology, 17, 177 (2015). https://doi.org/10.1088/1009-0630/17/3/01
P. Chaizy, H. R`eme, J.A. Sauvaud, C. d’Uston, R.P. Lin, D.E. Larson, D.L. Mitchell, et al., ”Negative ions in the coma of comet Halley,” Nature, 349, 393–396 (1991). https://doi.org/10.1038/349393a0
H. Massey, Negative Ions, 3rd edition, Cambridge University Press, Cambridge, 1976).
M. Bacal, and G.W. Hamilton, ”H− and D− Production in Plasmas,” Physical Review Letters, 42, 1538 (1979). https://doi.org/10.1103/PhysRevLett.42.1538
J. Jacquinot, B.D. McVey, and J.E. Scharer, ”Mode conversion of the fast magnetosonic wave in a deuterium-hydrogen tokamak plasma,” Physical Review Letters, 39, 88 (1977). https://doi.org/10.1103/PhysRevLett.39.88
R.A. Gottscho, and C.E. Gaebe, ”Negative ion kinetics in RF glow discharges,” IEEE transactions on plasma science, 14, 92-102 (1986). https://doi.org/10.1109/TPS.1986.4316511
A.A. Mamun, ”Degenerate pressure driven self-gravito-acoustic solitary waves in a self-gravitating degenerate quantum plasma system,” Physics of Plasmas, 25, 022307 (2018). https://doi.org/10.1063/1.5013138
A.A. Mamun, ”Self-gravito-acoustic waves and their instabilities in a self-gravitating degenerate quantum plasma system,” Contributions to Plasma Physics, 60, e201900080 (2019). https://doi.org/10.1002/ctpp.201900080
S. Islam, S. Sultana, and A.A. Mamun, ”Ultra-low frequency shock dynamics in degenerate relativistic plasmas,” Physics of Plasmas, 24, 092308 (2017). https://doi.org/10.1063/1.4994196
S. Islam, S. Sultana, and A.A. Mamun, ”Envelope solitons in three-component degenerate relativistic quantum plasmas,” Physics of Plasmas, 24, 092115 (2017). https://doi.org/10.1063/1.5001834
M. Adnan, G.Williams, A. Qamar, S. Mahmood, and I. Kourakis, ”Pressure anisotropy effects on nonlinear electrostatic excitations in magnetized electron-positron-ion plasmas,” The European Physical Journal D, 68, 1-15 (2014). https://doi.org/10.1140/EPJD%2FE2014-50384-Y
M.K. Deka, D. Mahanta, A.N. Dev, J. Sarma, S.K. Mishra, and E. Saikia, ”Propagation of ion beam modes in a spin degenerate quantum magneto plasma in presence of ionic pressure anisotropy,” AIP Conference Proceedings, 2819, 070004 (2023). https://doi.org/10.1063/5.0137748
M.K. Deka, D. Mahanta, A.N. Dev, J. Sarma, S.K. Mishra, and E. Saikia, ”Features of shock wave in a quantized magneto plasma under the influence of ionic pressure anisotropy and anisotropic viscosity,” AIP Conference Proceedings, 2819, 070005 (2023). https://doi.org/10.1063/5.0137746
Almas, Ata-ur-Rahman, N. Faiz, D.M. Khan, W. Emam, and Y. Tashkandy, ”Oblique Arbitrary Amplitde Dust Ion Acoustic Solitary Waves in Anisotropic Non-Maxwellian Plasmas with Kappa-Distributed Electrons,” Symmetry, 15, 1843 (2023). https://doi.org/10.3390/sym15101843
M. Khalid, A. Kabir, and L.S. Jan, ”Qualitative analysis of nonlinear electrostatic excitations in magnetoplasma with pressure anisotropy,” Zeitschrift f¨ur Naturforschung A, 78, 339–345 (2023). https://doi.org/10.1515/zna-2022-0312
S. Mahmood, S. Hussain,W. Masood, and H. Saleem, ”Nonlinear electrostatic waves in anisotropic ion pressure plasmas,” Physica Scripta, 79, 045501 (2009). https://doi.org/10.1088/0031-8949/79/04/045501
M. Manesh, S. Sijo, V. Anu, G. Sreekal, T.W. Neethu, D.E. Savithri, and C. Venugopal, ”Effect of anisotropy of lighter and heavier ions on solitary waves in a multi-ion plasma,” Phyics of Plasma, 24, 062905 (2017). https://doi.org/10.1063/1.4986107
S.U. Khan, M. Adnan, S. Mahmood, H. Ur-Rehman, and A. Qamar, ”Effect of pressure anisotropy on nonlinear periodic waves in a magnetized superthermal electron-positron-ion plasma,” Brazilian Journal of Physics, 49, 379–390 (2019). https://doi.org/10.1007/s13538-019-00653-w
M. Khalid, and A. Rahman, ”Ion acoustic cnoidal waves in a magnetized plasma in the presence of ion pressure anisotropy,” Astrophysics and Space Science, 364, 28 (2019). https://doi.org/10.1007/s10509-019-3517-0
G. Bordbar, and M. Karami, ”Anisotropic magnetized neutron star,” The European Physical Journal C, 82, 74 (2022). https://doi.org/10.1140/epjc/s10052-022-10038-0
A. Patidar, and P. Sharma, ”Magnetohydrodynamic wave modes in relativistic anisotropic quantum plasma,” Physics of Plasmas, 27, 042108 (2020). https://doi.org/10.1063/1.5143764
M. Ifran, S. Ali, and A.M. Mirza, ”Solitary waves in a degenerate relativistic plasma with ionic pressure anisotropy and electron trapping effects,” Physics of plasmas, 24, 052108 (2017). https://doi.org/10.1063/1.4981932
B. Pradhan, A. Gowrisankar, A. Abdikian, S. Banerjee, and A. Saha, ”Propagation of ion-acoustic wave and its fractal representations in spin polarized electron plasma,” Physica Scripta, 98, 6 (2023). https://doi.org/10.1088/1402-4896/acd3bf
E.F. El-Shamy, R.C. Al-Chouikh, A. El-Depsy, and N.S. Al-Wadie, ”Nonlinear propagation of electrostatic travelling waves in degenerate dense magnetoplasmas,” Physics of Plasmas, 23, 122122 (2016). https://doi.org/10.1063/1.4972817
K. Singh, P. Sethi, and N.S. Saini, ”Nonlinear excitations in a degenerate relativistic magneto-rotating quantum plasma,” Physics of Plasmas, 26, 092104 (2019). https://doi.org/10.1063/1.5098138
W.F. El-Taibany, E.E. Behery, S.K. El-Labany, and A.M. Abdelghany, ”Gravitoelectrostatic excitations in an opposite polarity complex plasma,” Physics of Plasmas, 26, 063701 (2019). https://doi.org/10.1063/1.5092514
P.K. Prasad, and A. Saha, ”Bifurcation analysis of ion-acousticwaves for Schr¨odinger equation in nonextensive Solar wind plasma,” Advances in Space Research, 67, 9-19 (2021). https://doi.org/10.1016/j.asr.2020.07.031
A. Saha, B. Pradhan, and S. Banerjee, ”Bifurcation analysis of quantum ion-acoustic kink, anti-kink and periodic waves of the Burgers equation in a dense quantum plasma,” The European Physical Journal Plus, 135, 216 (2020). https://doi.org/10.1140/epjp/s13360-020-00235-9
M.M. Selim, A. El-Depsy, and E.F. El-Shamy, ”Bifurcations of nonlinear ion-acoustic travelling waves in a multicomponent magnetoplasma with superthermal electrons,” Astrophysics and Space Science, 360, 66 (2015). https://doi.org/10.1007/s10509-015-2574-2
R.A. Shahein, and A.R. Seadawy, ”Bifurcation analysis of KP and modified KP equations in an unmagnetized dust plasma with nonthermal distributed multi-temperatures ions,” Indian Journal of Physics, 93, 941-949 (2019). https://doi.org/10.1007/s12648-018-1357-3
Prasad P.K., and Saha A. ”Dynamical behavior and multistability of ion-acoustic waves in a magnetized Auroral zone plasma,” Journal of Astrophysics and Astronomy, 42, 9 (2021). https://doi.org/10.1007/s12036-021-09721-7
M.K. Islam, S. Biswas, N.A. Chowdhury, A. Mannan, M. Salahuddinv, and A.A. Mamun, ”Obliquely propagating ion-acoustic shock waves in a degenerate quantum plasma,” Contributions to Plasma Physics, 62, e202100073 (2021). https://doi.org/10.1002/ctpp.202100073
N. Akhtar, and S. Mahmood, ”Effect of Ion Temperature Anisotropy on Modulated Electrostatic Waves and Envelope Solitons in a Magnetized Plasma,” IEEE Transactions on Plasma Science, 50, 3760-3773 (2022). https://doi.org/10.1109/TPS.2022.3200476
J.A. Bittencourt, Fundamentals of Plasma Physics, 3rd ed. (Springer, New York, NY, USA, 2004).
G.F. Chew, M.L. Goldberger, and F.E. Low, ”The Boltzmann equation and the one-fluid hydromagnetic equations in the absence of particle collisions,” Mathematical, Physical and Engineering Sciences, 236(1204), 112–118 (1956). https://www.jstor.org/stable/99870
M. Irfan, S. Ali, S.A. El-Tantawy, and S.M.E. Ismaeel, ”Three dimensional ion-acoustic rogons in quantized anisotropic magnetoplasmas with trapped/untrapped electrons,” Chaos, 29, 103133 (2019). https://doi.org/10.1063/1.5109157
W. Baumjohann, and R.A. Treumann, Basic Space Plasma Physics, (Imperial College Press, London, 1996).
E.I. El-Awady, and M. Djebli, ”Dust acoustic waves in a collisional strongly coupled dusty plasmas,” Astrophysics and Space Science, 342, 105–111 (2012). http://dx.doi.org/10.1007%2Fs10509-012-1159-6
Copyright (c) 2024 Deepsikha Mahanta, Jnanjyoti Sarma
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).