A Study of Time Evolution of Some Cosmological Parameters in The Framework of an Anisotropic Kaluza-Klein Metric Using an Empirical Exponential Scale Factor

Keywords: Dark energy, Kaluza-Klein theory, Cosmological parameter (Λ), Anisotropy, Exponential scale factor

Abstract

The present study attempts to determine the time dependence of some cosmological parameters in flat space (i.e., a space of zero spatial curvature), in the framework of an anisotropic Kaluza-Klein metric. The field equations for this work have been derived from the metric by assuming a power-law relation between the normal scale factor and the scale factor corresponding to the extra (i.e., the fifth) dimension. An empirical scale factor, having the expression of a = B exp(αtβ), has been used here in order to derive the expressions for some cosmological parameters as functions of time. The reason for choosing this scale factor is that it generates an expression for the deceleration parameter which undergoes a change of sign, as time goes on, from positive to negative, indicating a transition of the universe from an initial state of decelerated expansion to that of an accelerated expansion (which is its present state), as has been inferred from astrophysical observations. We have graphically depicted the evolution of some cosmological parameters with respect to what one may call the relative time, expressed as t/t0, where t0 is the present age of the universe. The present study finds the dynamical cosmological constant (Λ) to be negative, and it becomes less negative with time, changing at a gradually decreasing rate. The dependence of pressure of the all-pervading cosmic fluid upon density, corresponding to the fifth dimension, has been described in terms of a skewness parameter (δ) which comes out to be decreasing with time. The anisotropy factor has been calculated in this study, whose numerical value has been found to be decreasing with time, indicating a journey of the universe towards phases of gradually smaller anisotropy.

Downloads

Download data is not yet available.

References

A.G. Riess, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116(3), 1009–1038 (1998). https://doi.org/10.1086/300499

S. Perlmutter, et al., “Measurements of Ω and Λ from 42 High‐Redshift Supernovae,” Astrophys. J. 517(2), 565–586 (1999). https://doi.org/10.1086/307221

A.G. Riess, et al., “The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration,” Astrophys. J. 560(1), 49–71 (2001). https://doi.org/10.1086/322348

T. Padmanabhan and T. R. Choudhury, “A theoretician's analysis of the supernova data and the limitations in determining the nature of dark energy,” Mon. Not. R. Astron. Soc. 344(3), 823–834 (2003). https://doi.org/10.1046/j.1365-8711.2003.06873.x

L. Amendola, “Acceleration at z > 1?,” Mon. Not. R. Astron. Soc. 342(1), 221–226 (2003). https://doi.org/10.1046/j.1365-8711.2003.06540.x

B. Ratra and P. J. E. Peebles, “Cosmological consequences of a rolling homogeneous scalar field,” Phys. Rev. D 37(12), 3406 3427 (1988). https://doi.org/10.1103/physrevd.37.3406

T. Chiba, T. Okabe, and M. Yamaguchi, “Kinetically driven quintessence,” Phys. Rev. D, 62(2), (2000). https://doi.org/10.1103/physrevd.62.023511

E. Elizalde, S. Nojiri, and S. D. Odintsov, “Late-time cosmology in a (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up,” Phys. Rev. D, 70(4), (2004). https://doi.org/10.1103/physrevd.70.043539

R.R. Caldwell, “A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state,” Phys. Lett. B, 545(1-2), 23–29 (2002). https://doi.org/10.1016/s0370-2693(02)02589-3

D. Janzen, “Einstein's cosmological considerations,” arXiv:1402.3212 (2014). https://doi.org/10.48550/arXiv.1402.3212

J.M. Overduin and F. I. Cooperstock, “Evolution of the scale factor with a variable cosmological term,” Phys. Rev. D, 58(4), (1998). https://doi.org/10.1103/physrevd.58.043506

S. Nojiri, S. D. Odintsov, and S. Tsujikawa, "Properties of singularities in the (phantom) dark energy universe," Phys. Rev. D, 71(6), (2005). https://doi.org/10.1103/physrevd.71.063004

S. Nojiri, S. D. Odintsov, and M. Sasaki, "Gauss-Bonnet dark energy," Phys. Rev. D, 71(12), (2005). https://doi.org/10.1103/physrevd.71.123509

T. Harko, F. S. N. Lobo, S. Nojiri, and S. D. Odintsov, "f(R,T)gravity," Phys. Rev. D, 84(2), (2011). https://doi.org/10.1103/physrevd.84.024020

D. Sáez and V. J. Ballester, "A simple coupling with cosmological implications," Phys. Lett. A, 113(9), 467–470 (1986). https://doi.org/10.1016/0375-9601(86)90121-0

C. Brans and R. H. Dicke, "Mach's Principle and a Relativistic Theory of Gravitation," Phys. Rev. 124(3), 925–935 (1961). https://doi.org/10.1103/physrev.124.925

M. Kiran, D. R. K. Reddy, and V. U. M. Rao, "Minimally interacting holographic dark energy model in a scalar- tensor theory of gravitation," Astrophys. Space Sci. 354(2), 577–581 (2014). https://doi.org/10.1007/s10509-014-2099-0

Y. Aditya, V. U. M. Rao, and M. Vijaya Santhi, "Bianchi type-II, VIII and IX cosmological models in a modified theory of gravity with variable Λ," Astrophys. Space Sci. 361(2) (2016). https://doi.org/10.1007/s10509-015-2617-8

V.U.M. Rao, U. Y. D. Prasanthi, and Y. Aditya, "Plane symmetric modified holographic Ricci dark energy model in Saez-Ballester theory of gravitation," Results Phys. 10, 469–475 (2018). https://doi.org/10.1016/j.rinp.2018.06.027

Y. Aditya and D. R. K. Reddy, "FRW type Kaluza–Klein modified holographic Ricci dark energy models in Brans–Dicke theory of gravitation," Eur. Phys. J. C, 78(8), (2018). https://doi.org/10.1140/epjc/s10052-018-6074-8

T. KALUZA, "On the Unification Problem in Physics," Int. J. Mod. Phys. D 27(14), 1870001 (2018). https://doi.org/10.1142/s0218271818700017

O. Klein, “Quantentheorie und fünfdimensionale Relativitätstheorie,” Zeitschrift für Physik, 37(12), 895-906 (1926). https://doi.org/10.34663/9783945561317-10

A. Chodos, and S. Detweiler, "Where has the fifth dimension gone?," Phys. Rev. D, 21(8), 2167–2170 (1980). https://doi.org/10.1103/physrevd.21.2167

E. Witten, "Some properties of O(32) superstrings," Phys. Lett. B, 149(4-5), 351–356 (1984). https://doi.org/10.1016/0370-2693(84)90422-2

T. Appelquist, A. Chodos, and G.O.P. Freund, Modern Kaluza-Klein theories, (Addison-Wesley Pub. Co., Menlo Park, Calif, 1987). http://pi.lib.uchicago.edu/1001/cat/bib/719574

T. Appelquist, and A. Chodos, “Quantum Effects in Kaluza-Klein Theories,” Phys. Rev. Lett. 50(3), 141–145 (1983). https://doi.org/10.1103/physrevlett.50.141

W.J. Marciano, “Time Variation of the Fundamental “Constants” and Kaluza-Klein Theories,” Phys. Rev. Lett. 52(7), 489–491 (1984). https://doi.org/10.1103/physrevlett.52.489

N. Indrakumar Jain, “Dark energy cosmological model with anisotropic fluid and time varying lambda in Kaluza-Klein metric,” Int. J. Math. Phys. 14(1), (2023). https://doi.org/10.26577/ijmph.2023.v14.i1.011

J.A. Ferrari, “On an approximate solution for a charged object and the experimental evidence for the Kaluza-Klein theory,” Gen. Relativ. Gravit. 21(7), 683–695 (1989). https://doi.org/10.1007/bf00759078

D. Kalligas, P.S. Wesson, and C.W.F. Everitt, “The classical tests in Kaluza-Klein gravity,” Astrophys. J. 439, 548 (1995). https://doi.org/10.1086/175195

V. Dzhunushaliev, and D. Singleton, “Experimental Test for Extra Dimensions in Kaluza–Klein Gravity,” Gen. Relativ. Gravit. 32(2), 271–280 (2000). https://doi.org/10.1023/a:1001943725858

J.P. Mbelek, “Experimental tests of an improved 5D Kaluza-Klein theory,” Int. J. Mod. Phys. A, 35(02n03), 2040027 (2020). https://doi.org/10.1142/s0217751x20400278

M. Tajmar, and L.L. Williams, “An Experimental Test of the Classical Interpretation of the Kaluza Fifth Dimension,” Physics, 2(4), 587–595 (2020). https://doi.org/10.3390/physics2040033

N.I. Jain, and S. S. Bhoga, “Kaluza-Klein Bulk Viscous Cosmological Model with Time Dependent Gravitational Constant and Cosmological Constant,” Int. J. Theor. Phys. 54(8), 2991–3003 (2015). https://doi.org/10.1007/s10773-015-2538-x

S.D. Katore, M. M. Sancheti, and N. K. Sarkate, “Kaluza-Klein Anisotropic Magnetized Dark Energy Cosmological Model in Brans-Dicke Theory of Gravitation,” Astrophysics, 57(3), 384–400 (2014). https://doi.org/10.1007/s10511-014-9344-7

K.S. Adhav, A.S. Bansod, R.P. Wankhade, and H.G. Ajmire, “Kaluza-Klein Cosmological Models with Anisotropic Dark Energy,” Mod. Phys. Lett. A, 26(10), 739–750 (2011). https://doi.org/10.1142/s0217732311035080

D.R.K. Reddy, and R. Santhi Kumar, “Kaluza-Klein dark energy cosmological model in scale Co-variant Theory of Gravitation,” Astrophys. Space Sci. 349(1), 485–489 (2013). https://doi.org/10.1007/s10509-013-1656-2

R.L. Naidu, Y. Aditya, and D. R. K. Reddy, “Bianchi type-V dark energy cosmological model in general relativity in the presence of massive scalar field,” Heliyon, 5(5), e01645 (2019). https://doi.org/10.1016/j.heliyon.2019.e01645

S.D. Katore, and S.P. Hatkar, “Kaluza Klein universe with magnetized anisotropic dark energy in general relativity and Lyra manifold,” New Astron. 34, 172–177 (2015). https://doi.org/10.1016/j.newast.2014.07.002

Y. Aditya, K.D. Raju, V.U.M. Rao, and D.R.K. Reddy, “Kaluza-Klein dark energy model in Lyra manifold in the presence of massive scalar field,” Astrophys. Space Sci. 364(11) (2019). https://doi.org/10.1007/s10509-019-3681-2

A.K. Mishra, U.K. Sharma, and A. Pradhan, “A comparative study of Kaluza–Klein model with magnetic field in Lyra manifold and general relativity,” New Astron. 70, 27–35 (2019). https://doi.org/10.1016/j.newast.2019.02.003

N.I. Jain, S.S. Bhoga, and G.S. Khadekar, “Implications of Time Varying Cosmological Constant on Kaluza-Klein Cosmological Model,” Int. J. Theor. Phys. 52(12), 4416–4426 (2013). https://doi.org/10.1007/s10773-013-1760-7

B. Mishra, S. K. Tripathy, and S. Tarai, “Accelerating models with a hybrid scale factor in extended gravity,” J. Astrophys. Astron. 42(1), (2021). https://doi.org/10.1007/s12036-020-09655-6

B. Mishra, S.K. Tripathy, and P.P. Ray, “Bianchi-V string cosmological model with dark energy anisotropy,” Astrophysics and Space Science, 363, 1-7 (2018). https://doi.org/10.1007/s10509-018-3313-2

B. Mishra, S.K. Tripathy, and S. Tarai, “Cosmological models with a hybrid scale factor in an extended gravity theory,” Mod. Phys. Lett. A, 33(09), 1850052 (2018). https://doi.org/10.1142/s0217732318500529

S.K. Tripathy, B. Mishra, M. Khlopov, and S. Ray, “Cosmological models with a hybrid scale factor,” Int. J. Mod. Phys. D, 30(16), 2140005 (2021). https://doi.org/10.1142/s0218271821400058

A. Pradhan, B. Saha, and V. Rikhvitsky, “Bianchi type-I transit cosmological models with time dependent gravitational and cosmological constants: reexamined,” Indian J. Phys. 89(5), 503–513 (2014). https://doi.org/10.1007/s12648-014-0612-5

M.A. Hossain, M.M. Alam, and A.H.M.M. Rahman, “Kaluza-Klein Cosmological Models with Barotropic Fluid Distribution,” Phys. & Astron. Int. J. 1(3), 98-103 (2017). https://doi.org/10.15406/paij.2017.01.00018

N. Ahmed, and S.Z. Alamri, “Cosmological determination to the values of the pre-factors in the logarithmic corrected entropy-area relation,” Astrophys. Space Sci. 364(6) (2019). https://doi.org/10.1007/s10509-019-3590-4

B. Mishra, S. K. Tripathy, and S. Ray, “Cosmological models with squared trace in modified gravity,” Int. J. Mod. Phys. D, 29(15), 2050100 (2020). https://doi.org/10.1142/s021827182050100x

F.M. Esmaeili, “Anisotropic Behavior of Cosmological Models with Exponential and Hyperbolic Scale Factors,” J. High Energy Phys. Gravit. Cosmol. 04(02), 223–235 (2018). https://doi.org/10.4236/jhepgc.2018.42017

A. Chand, R. K. Mishra, and A. Pradhan, “FRW cosmological models in Brans-Dicke theory of gravity with variable q and dynamical Λ-term,” Astrophys. Space Sci. 361(2) (2016). https://doi.org/10.1007/s10509-015-2579-x

A. Pradhan, “Two-fluid atmosphere from decelerating to accelerating Friedmann–Robertson–Walker dark energy models,” Indian J. Phys. 88(2), 215–223 (2013). https://doi.org/10.1007/s12648-013-0399-9

C. Chawla, R.K. Mishra, and A. Pradhan, “String cosmological models from early deceleration to current acceleration phase with varying G and Λ Eur. Phys. J. Plus, 127(11), (2012). https://doi.org/10.1140/epjp/i2012-12137-4

N. Ahmed, and T.M. Kamel, “Note on dark energy and cosmic transit in a scale-invariance cosmology,” Int. J. Geom. Methods Mod. Phys. 18(05), 2150070 (2021). https://doi.org/10.1142/s0219887821500705

R.K. Tiwari, F. Rahaman, and S. Ray, “Five Dimensional Cosmological Models in General Relativity,” Int. J. Theor. Phys. 49(10), 2348–2357 (2010). https://doi.org/10.1007/s10773-010-0421-3

A. Pradhan, “Anisotropic Bianchi Type-I Magnetized String Cosmological Models with Decaying Vacuum Energy Density Λ(t),” Commun. Theor. Phys. 55(5), 931–941 (2011). https://doi.org/10.1088/0253-6102/55/5/36

A.K. Yadav, ‘Bianchi type V matter filled universe with varying Lambda term in general relativity,” arXiv:0911.0177, (2009). https://doi.org/10.48550/arXiv.0911.0177

A.V. Prasanthi, G. Suryanarayana, Y. Aditya, and U.Y.D. Prasanthi, “Cosmological Dynamics of Anisotropic Kaniadakis Holographic Dark Energy Model in Brans-Dicke Gravity,” East Eur. J. Phys. (2), 10-20 (2024). https://doi.org/10.26565/2312-4334-2024-2-01

A. Pradhan, “Accelerating dark energy models with anisotropic fluid in Bianchi type VI0space-time,” Res. Astron. Astrophys. 13(2), 139–158 (2013). https://doi.org/10.1088/1674-4527/13/2/002

A. K. Yadav, F. Rahaman, and S. Ray, “Dark Energy Models with Variable Equation of State Parameter,” Int. J. Theor. Phys. 50(3), 871–881 (2010). https://doi.org/10.1007/s10773-010-0628-3

R.A. Knop, et al., “New Constraints on ΩM, ΩΛ, andwfrom an Independent Set of 11 High‐Redshift Supernovae Observed with theHubble Space Telescope,” Astrophys. J. 598(1), 102–137 (2003). https://doi.org/10.1086/378560

M. Tegmark, et al., “The Three‐Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey,” Astrophys. J. 606(2), 702–740 (2004). https://doi.org/10.1086/382125

M.F. Shamir, “Plane Symmetric Vacuum Bianchi Type III Cosmology in f(R) Gravity,” Int. J. Theor. Phys. 50(3), 637–643 (2010). https://doi.org/10.1007/s10773-010-0587-8

M.F. Shamir, and A.A. Bhatti, “Anisotropic dark energy Bianchi type III cosmological models in the Brans–Dicke theory of gravity,” Can. J. Phys. 90(2), 193–198 (2012). https://doi.org/10.1139/p2012-007

A. Pradhan, P. Garg, and A. Dixit, “FRW cosmological models with cosmological constant in f(R, T) theory of gravity,” Can. J. Phys. 99(9), 741–753 (2021). https://doi.org/10.1139/cjp-2020-0282

G.K. Goswami, “Cosmological parameters for spatially flat dust filled Universe in Brans-Dicke theory,” Res. Astron. Astrophys. 17(3), 27 (2017). https://doi.org/10.1088/1674-4527/17/3/27

R.K. Thakur, S. Gupta, R. Nigam, and P.K. Thiruvikraman, “Investigating the hubble tension through hubble parameter data,” Research in Astronomy and Astrophysics, 23(6), 065017 (2023). https://doi.org/10.1088/1674-4527/acd0e8

V.K. Bhardwaj, A. Dixit, R. Rani, G.K. Goswami, and A. Pradhan. “An axially symmetric transitioning models with observational constraints,” Chinese Journal of Physics, 80, 261-274 (2022). https://doi.org/10.1016/j.cjph.2022.09.007

N. Myrzakulov, M. Koussour, H.A.A. Alnadhief, and EI. Hassan, “Impact of dark energy on the equation of state in light of the latest cosmological data,” Progress of Theoretical and Experimental Physics, 9, 093E02 (2023). https://doi.org/10.1093/ptep/ptad110

A.G. Riess, et al., “A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team,” The Astrophysical journal letters, 934(1), L7 (2022). https://doi.org/10.3847/2041-8213/ac5c5b

Q. Wu, H. Yu, and F.Y. Wang, “A New Method to Measure Hubble Parameter H(z) Using Fast Radio Bursts,” Astrophys. J. 895(1), 33 (2020). https://doi.org/10.3847/1538-4357/ab88d2

K.K. Singh, “An interpretation of the Cosmological Constant from the Physical Constants,” BARC Newsletter, 22-25 (2021). https://barc.gov.in/barc_nl/2021/2021070804.pdf

U. Leonhardt, “Lifshitz theory of the cosmological constant,” Ann. Phys. 411, 167973 (2019). https://doi.org/10.1016/j.aop.2019.167973

V. Gueorguiev, and A. Maeder, “Revisiting the Cosmological Constant Problem within Quantum Cosmology,” Universe, 6(8), 108 (2020). https://doi.org/10.3390/universe6080108

C. Köhn, “A Solution to the Cosmological Constant Problem in Two Time Dimensions,” J. High Energy Phys. Gravit. Cosmol. 06(04), 640–655 (2020). https://doi.org/10.4236/jhepgc.2020.64043

L. Abbott, “The Mystery of the Cosmological Constant,” Sci. Am. 258(5), 106–113 (1988). https://doi.org/10.1038/scientificamerican0588-106

S. Weinberg, “The cosmological constant problem,” Rev. Mod. Phys. 61(1), 1–23 (1989). https://doi.org/10.1103/revmodphys.61.1

Published
2024-09-02
Cited
How to Cite
Roy, S. (2024). A Study of Time Evolution of Some Cosmological Parameters in The Framework of an Anisotropic Kaluza-Klein Metric Using an Empirical Exponential Scale Factor. East European Journal of Physics, (3), 83-92. https://doi.org/10.26565/2312-4334-2024-3-08