Factors Influencing the Ideality Factor of Semiconductor p-n and p-i-n Junction Structures at Cryogenic Temperatures

  • Jo`shqin Abdullayev National Research University TIIAME, Department of Physics and Chemistry, Tashkent, Uzbekistan https://orcid.org/0000-0001-6110-6616
  • Ibrokhim B. Sapaev National Research University TIIAME, Department of Physics and Chemistry, Tashkent, Uzbekistan; Western Caspian University, Baku, Azerbaijan https://orcid.org/0000-0003-2365-1554
Keywords: p-n junction, p-i-n junction, SRH recombination, Internal functional parameters, External factors, Ideality factor, Cryogenic temperatures

Abstract

This article elucidates the dependence of the ideality factor on both internal functional parameters and external factors in semiconductors at low temperatures. We have explored the influence of external factors such as temperature and external source voltage. Through numerical modeling and theoretical analysis, we thoroughly investigate the dependencies of semiconductor material internal functional parameters—including doping concentration, the bandgap of semiconductors, the lifetime of charge carriers, and geometric dimensions ranging from micrometers to nanometers— the ideality factor on p-n and p-i-n junction structures. Our analysis spans cryogenic temperatures from 50 K to 300 K, with intervals of 50 K. To conduct this study, we have focused on p-n and p-i-n junction structures fabricated from Si and GaAs. The selected model features geometric dimensions of a=10 μm, b=8 μm, and c=6 μm. The thickness of the i-layer ranged from 10 µm to 100 µm in 10- µm increments. Increasing the thickness of the i-layer results in a corresponding rise in the ideality factor.

Downloads

Download data is not yet available.

References

S.M. Sze, and K.K. Ng, Physics of Semiconductor Devices, third edition, (John Wiley & Sons, Inc., 2007).

E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, IEEE Trans. Electron Devices, 58(9), 2903 (2011). https://doi.org/10.1109/TED.2011.2159608

Z. Arefinia, A. Asgari, Solar Energy Materials and Solar Cells, 137, 146 (2015). https://doi.org/10.1016/j.solmat.2015.01.032

O.V. Pylypova, A.A. Evtukh, P.V. Parfenyuk, I.I. Ivanov, I.M. Korobchuk, O.O. Havryliuk, and O.Yu. Semchuk, Opto-Electronics Review, 27(2), 143 (2019). https://doi.org/10.1016/j.opelre.2019.05.003

R. Ragi, R.V.T. da Nobrega, U.R. Duarte, and M.A. Romero, IEEE Trans. Nanotechnol. 15(4), 627 (2016). https://doi.org/10.1109/TNANO.2016.2567323

R.D. Trevisoli, R.T. Doria, M. de Souza, S. Das, I. Ferain, and M.A. Pavanello, IEEE Trans. Electron Devices, 59(12), 3510 (2012). https://doi.org/10.1109/TED.2012.2219055

N.D. Akhavan, I. Ferain, P. Razavi, R. Yu, and J.-P. Colinge, Appl. Phys. Lett. 98(10), 103510 (2011). https://doi.org/10.1063/1.3559625

A.V. Babichev, H. Zhang, P. Lavenus, F.H. Julien, A.Y. Egorov, Y.T. Lin, and M. Tchernycheva, Applied Physics Letters, 103(20), 201103 (2013). https://doi.org/10.1063/1.4829756

D.H.K. Murthy, T. Xu, W.H. Chen, A.J. Houtepen, T.J. Savenije, L.D.A. Siebbeles, et al., Nanotechnology, 22(31), 315710 (2011). https://doi.org/10.1088/0957-4484/22/31/315710

B. Pal, K.J. Sarkar, and P. Banerji, Solar Energy Materials and Solar Cells, 204, 110217 (2020). https://doi.org/10.1016/j.solmat.2019.110217

J.Sh. Abdullayev, I.B. Sapaev, Eurasian Physical Technical Journal, 21(3), 21–28 (2024). https://doi.org/10.31489/2024No3/21-28

P. Dubey, B. Kaushik, and E. Simoen, IET Circuits, IET Circuits, Devices & Systems, (2019). https://doi.org/10.1049/iet-cds.2018.5169

M.-D. Ko, T. Rim, K. Kim, M. Meyyappan, and C.-K. Baek, Scientific Reports, 5(1), 11646 (2015). https://doi.org/10.1038/srep11646

A.M. de Souza, D.R. Celino, R. Ragi, and M.A. Romero, Microelectronics J. 119, 105324 (2021). https://doi.org/10.1016/j.mejo.2021.105324

M.C. Putnam, S.W. Boettcher, M.D. Kelzenberg, D.B. Turner-Evans, J.M. Spurgeon, E.L. Warren, et al., Energy & Environmental Science, 3(8), 1037 (2010). https://doi.org/10.1039/C0EE00014K

Abdullayev, J. S., & Sapaev, I. B. (2024). East European Journal of Physics, (3), 344-349. https://doi.org/10.26565/2312-4334-2024-3-39R

Elbersen, R.M. Tiggelaar, A. Milbrat, G. Mul, H. Gardeniers, and J. Huskens, Advanced Energy Materials, 5(6), 1401745 (2014). https://doi.org/10.1002/aenm.201401745

Published
2024-12-08
Cited
How to Cite
Abdullayev, J., & Sapaev, I. B. (2024). Factors Influencing the Ideality Factor of Semiconductor p-n and p-i-n Junction Structures at Cryogenic Temperatures. East European Journal of Physics, (4), 329-333. https://doi.org/10.26565/2312-4334-2024-4-37