Study on Anisotropic Dark Energy Cosmological Models in Generalized Brans-Dicke Theory

Keywords: Generalized Brans-Dicke theory, Hybrid scale factor, Skewness parameter, Unified dark fluid

Abstract

In this present paper, we have investigated the dark energy cosmological model in Bianchi−V I0 spacetime by considering generalised Brans-Dicke theory, self-interacting potential, and a dynamical coupling parameter. For this purpose, we have utilised a hybrid scale factor to approximate the dynamical behaviour of the deceleration parameter. The deceleration parameter should display distinctive flipping behaviour at the transition redshift since the universe is thought to have changed from an early deceleration to a late temporal acceleration. We have studied six alternative transitioning dark energy models on the basis of observational restrictions on the transition redshift. For each model, the behaviour of the dynamical scalar
field, the Brans-Dicke parameter, and the self-interacting potential are examined. On top of that, we used the generalised Brans-Dicke theory to estimate how the Newtonian gravitational constant changes over time.

Downloads

Download data is not yet available.

References

A.G. Riess, et al., Astron J. 116, 1009 (1998). https://doi.org/10.1086/300499

S. Perlmutter, et al., Nature, 391, 51 (1998). https://doi.org/10.1038/34124

C.L. Bennett, et al., Astrophys. J. suppl. 148, 1 (2003). https://doi.org/10.1086/377253

D.N. Spergel, et al., Astrophys. J. Suppl. 148, 175 (2003). https://doi.org/10.1086/377226

S.M. Carroll, et al., Living. Rev. Relativ. 4, 1 (2001). https://doi.org/10.12942/lrr-2001-1

T. Padmanabhan, Phys. Rep. 380, 235 (2003). https://doi.org/10.1016/S0370-1573(03)00120-0

C.H. Brans, and R.H. Dicke, Phys. Rev. 124, 925 (1961). https://doi.org/10.1103/PhysRev.124.925

C.M. Will, Theory and Experiment in Gravitational Physics, (Cambridge University, Cambridge, (1981).

C. Mathiazhagan and V.B. Johri, Class. Quantum Grav. 1, L29 (1984). https://doi.org/10.1088/0264-9381/1/2/005

D. La, and P.J. Steinhardt, Phys. Rev. Lett, 62, 376 (1989). https://doi.org/10.1103/PhysRevLett.62.376

N. Banerjee and D. Pavon, Class. Quant. Grav., 18, 593 (2001).

S. Sen and A.A. Sen, Phys. Rev. D, 63, 124006 (2001).

D.F. Mota and J.D. Barrow, Mon. Not. R. Astron. Soc. 349, 291 (2004).

D.F. Mota and J.D. Barrow, Phys. Lett. B, 581, 141 (2004).

S. Das and N. Banerjee, Phys. Rev. D, 78, 043512 (2008).

N. Banerjee and D. Pavon, Phys. Rev. D, 63, 043504 (2001). https://doi.org/10.1103/PhysRevD.63.043504

K. Nordtvedt (Jr), Astrophys. J. 161, 1059 (1970). https://doi.org/10.1086/150607

J.P. Mimoso and A.M. Nunes, Phys. Lett A, 248, 325 (1998). https://doi.org/10.1016/S0375-9601(98)00724-5

M.V. Santhi, et al., Canadian Journal of Physics, 95(2), 179 (2017). https://doi.org/10.1139/cjp-2016-0628

E.A. Hegazy, and F. Rahaman, Indian Journal of Physics, 94(11), 1847 (2020). https://doi.org/10.1007/s12648-019-01614-4

Y. Aditya, et al., Indian Journal of Physics, 95, 383 (2021). https://doi.org/10.1007/s12648-020-01722-6

D. Chhajed, et al., Journal of Ultra Scientist of Physical Sciences-Section A. (Mathematics), 34(4), (2022). http://dx.doi.org/10.

/jusps-B/340401

S.K. Tripathy, et al., Physics of the Dark Universe 30, 100722 (2020). https://doi.org/10.1016/j.dark.2020.100722

S.K. Tripathy, et al., The European Physical Journal C, 75, 149 (2015). https://doi.org/10.1140/epjc/s10052-015-3371-3

C.B. Collins, et al., Gen. Relativ. Gravit. 12, 805, (1980). https://doi.org/10.1007/BF00763057

S. Capozziello, et al., Phys. Rev. D, 73, 043512 (2006), https://doi.org/10.1103/PhysRevD.73.043512

E. Babichev, et al., Clas. Quant. Grav. 22, 143 (2005). https://doi.org/10.1088/0264-9381/22/1/010

S.K. Tripathy, et al., Physics of the Dark Universe, 30, 100722 (2020). https://doi.org/10.1016/j.dark.2020.100722

R.R. Caldwell, Phys. Lett. B, 545, 23 (2002). https://doi.org/10.1016/S0370-2693(02)02589-3

E.V. Linder, Phys. Rev. Lett. 90, 091301 (2003). https://doi.org/10.1103/PhysRevLett.90.091301

B. Mishra and S.K. Tripathy, Mod. Phys. Lett. A, 30, 1550175 (2015). https://doi.org/10.1142/S0217732315501758

B. Mishra, et al., Mod. Phys. Lett. A, 33, 1850052 (2018). https://doi.org/10.1142/S0217732318500529

B. Mishra, et al., Astrophys. Space Sci. 363, 86 (2018). https://doi.org/10.1007/s10509-018-3313-2

Study on Anisotropic Dark Energy Cosmological Models in Generalized Brans-Dicke Theory

EEJP. 3 (2024)

P.P. Ray, et al., Int. J. Mod. Phys. D, 28, 1950093 (2019). https://doi.org/10.1142/S0218271819500937

B. Mishra, et al., Mod. Phys. Lett. A, 34, 1950217 (2019). https://doi.org/10.1142/S0217732319502171

B. Mishra, et al., Journal of Astrophysics and Astronomy, 42, 2 (2021). https://doi.org/10.1007/s12036-020-09655-6

N.G. Busca, Astron. Astrophys. 552, A96 (2013). https://doi.org/10.1051/0004-6361/201220724

S. Capozziello, et al., (2014). https://doi.org/10.48550/arXiv.1403.1421

A.G. Reiss, et al., Astrophys. J. 659, 98 (2007). https://doi.org/10.1086/510378

J. Lu, et al., Phys. Lett. B, 699, 246 (2011). https://doi.org/10.1016/j.physletb.2011.04.022

M. Moresco, et al., (2016). https://doi.org/10.48550/arXiv.1601.01701

Published
2024-09-02
Cited
How to Cite
Santhi, M. V., & SantoshRupa, K. (2024). Study on Anisotropic Dark Energy Cosmological Models in Generalized Brans-Dicke Theory. East European Journal of Physics, (3), 103-115. https://doi.org/10.26565/2312-4334-2024-3-10