Cathodic Vacuum ARC Multilayer Coatings (TiZrSiY)N/NbN: Structure and Properties Depending on The Deposition Interval of Alternate Layers
Abstract
Two series of multilayer coatings with different numbers of bilayers (268 and 536, respectively) were synthesised using the cathodic vacuum-arc deposition (CVAD) with the simultaneous sputtering of two different cathodes. The first cathode was made of the multicomponent TiZrSiY material, and the second one was made of technical niobium. The coatings were condensed in a nitrogen atmosphere at a constant negative bias potential applied to the substrate. The resulting coatings have a distinct periodic structure composed of individual layers of (TiZrSiY)N and NbN with the thicknesses determined by the deposition interval (10 or 20 s, respectively). The total thicknesses of the coatings determined by the number of bilayers were 11 and 9 microns, respectively. The formation of polycrystalline TiN and NbN phases with grain size comparable to the size of the layers has been identified for both series of coatings. The layers exhibit a columnar structure growth with a predominant orientation (111). The hardness of the experimental coatings depends on the thickness of the layers and reaches 39.7 GPa for the coating with the smallest layer thickness. The friction coefficient of the obtained coatings varies from 0.512 to 0.498 and also depends on the thickness of the layers. A relatively large value of the friction coefficient is due to high roughness and the presence of a droplet fraction on the surface as well as in the volume of the coatings.
Downloads
References
A. Cavaleiro and J.T. de Hosson, editors Nanostructured Coatings, (Springer-Verlag, USA, 2006). https://link.springer.com/content/pdf/bfm:978-0-387-48756-4/1?pdf=chapter%20toc
A.D. Pogrebnjak, О.М. Ivasishin, and V.M. Beresnev. Uspehi Fiziki Metallov, 17(1), 1 (2016). https://doi.org/10.15407/ufm.17.01.001
M. Stueber, H. Holleck, H. Leiste, et al., J. Alloys Compd. 483, 321 (2009) https://doi.org/10.1016/j.jallcom.2008.08.133
N. Hansen. Scr. Mater. 51, 801 (2004). https://doi.org/10.1016/j.scriptamat.2004.06.002
S.Z. Li, Y. Shi, and H. Peng, Plasma Chem. and Plasma Proc. 12, 287 (1992). https://doi.org/10.1007/BF01447027
V.V. Vasil’ev, A.A. Luchaninov, E.N. Reshetnyak, V.E. Strel’nitskij, G.N. Tolmatcheva, and M.V. Reshetnyak, PAST, 2009(2), 173 (2009). https://vant.kipt.kharkov.ua/ARTICLE/VANT_2009_2/article_2009_2_173.pdf
O.D. Pohrebniak, O.V. Bondar, O.V. Sobol, and V.M. Beresnev, Soft Nanoscience Letters, 3, 46 (2013). http://dx.doi.org/10.4236/snl.2013.33009
Q. Wan, N. Liu, B. Yang, H. Liu, and Y. Chen, Journal of Wuhan University of Technology-Mater. Sci. Ed. 34, 774 (2019). https://doi.org/10.1007/s11595-019-2116-9
J. Musil, and H. Polakova. Surf. Coat. Technol. 127, 99 (2000). https://doi.org/10.1016/S0257-8972(00)00560-0
D.C. Tsai, Y.L. Huang, S.R. Lin, et al. Appl. Surf. Sci. 257, 1361 (2010) http://dx.doi.org/10.1016/j.apsusc.2010.08.078
B.D. Beake, L. Bergdoll, L. Isern, et al., Int. J. Refract. Met. Hard Mater. 95, 105441 (2021). https://doi.org/10.1016/j.ijrmhm.2020.105441
M. Li, R. Wang, Y. Fan, and L. Wang, Materials Research Innovations, 19(8), S8–190 (2015). https://doi.org/10.1179/1432891715Z.0000000001653
J. Yi, J. Xiong, Z. Guo, et al., Ceram. Int. 48, 6208 (2022). http://dx.doi.org/10.1016/j.ceramint.2021.11.161
I. Aksionov, A. Andreev, V. Belous, et al., Вакуумная дуга: источники плазмы, осаждение покрытий, поверхностное модифицирование [Vacuum arc: plasma sources, coating deposition, surface modification] (Naukova dumka, Kyiv, 2012). (in Russian).
А. Bolgar, and V. Linvinenko, Термодинамические свойства нитридов [Thermodynamic properties of nitrides] (Naukova dumka, Kyiv, 1980). (in Russian).
M. Azarenkov, O. Sobol`, A. Pogrebniak, and V. Beresnev, Инженерия вакуумно-плазменных покрытий [Engineering of vacuum plasma coatings], (KhNU, Kharkiv, 2011). (in Russian).
H. Holleck, Binäre und ternäre Carbid- und Nitridsysteme der Übergangsmetalle. Materialkundlich-Technische Reihe, Nr. 6 (Hrsg. G. Petzow). (Gebrüder Borntraeger, Berlin - Stuttgart, 1984).
G.Y. Oya, and Y. Onodera. J. Appl. Phys. 45, 1389 (1974). https://doi.org/10.1063/1.1663418
G.Y. Oya, and Y. Onodera. J. Appl. Phys. 47, 2833 (1976). https://doi.org/10.1063/1.323080
V.M. Beresnev, S.V. Lytovchenko, D.V. Horokh, B.O. Mazilin, et. al., Journal of nano- and electronic physics. 11(5), 05037 (2019). https://jnep.sumdu.edu.ua/download/numbers/2019/5/articles/jnep_11_5_05037.pdf
M. Hock, E. Schaffer, W. Doll, and G. Kleer, Surface and Coatings Techn. 163-164, 689 (2003). https://doi.org/10.1016/S0257-8972(02)00658-8
V. Ivashchenko, S. Veprek, A. Pogrebnjak, and B. Postolnyi, Science and Technology of Advanced Materials. 15(2), 025007 (2014). https://doi.org/10.1088/1468-6996/15/2/025007
A.D. Pogrebnjak, V.I. Ivashchenko, P.L. Skrynskyy, et al., Composites Part B: Engineering, 142, 85 (2018). https://doi.org/10.1016/j.compositesb.2018.01.004
V.M. Beresnev, O.V. Sobol, S.S. Grankin, U.S. Nemchenko, et al., Inorg. Mater. Appl. Res. 7, 388 (2016) https://doi.org/10.1134/S2075113316030047
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).