Correlating Deposition Parameters with Structure and Properties of Nanoscale Multilayer (TiSi)N/CrN Coatings

Keywords: multilayer coatings, refractory metal nitrides, hardness, adhesive strength

Abstract

Multilayer (TiSi)N/CrN coatings were fabricated through vacuum-arc deposition by applying the arc currents of (100 ÷ 110) A on TiSi cathode and (80 ÷ 90) A on Cr cathode, negative bias potential connected to the substrate holder of –(100 ÷ 200) V and reactive gas pressure of (0.03 ÷ 0.6) Pa. Applying a negative bias voltage on substrates enhanced the ion bombardment effect, which affected the chemical compositions, phase state, mechanical and tribological properties of (TiSi)N/CrN coatings. Obtained results indicated that (TiSi)N/CrN coatings with Si content ranging from 0.53 to 1.02 at. % exhibited a high hardness level of (22.1 ÷ 31.1) GPa accompanied with a high Young’s modulus of (209 ÷ 305) GPa, H/E* level of (0.080 ÷ 0.100), H3/E*2 level of (0.15 ÷ 0.33) GPa, and the friction coefficient of 0.35. Values of critical loads at dynamic indentation, changes in friction coefficient and level of acoustic emission signal evidence the high adhesive strength of (TiSi)N/CrN coatings, which allows recommending them to increase cutting tool performance.

Downloads

Download data is not yet available.

Author Biography

Vyacheslav A. Stolbovoy, National Science Center «Kharkiv Institute of Physics and Technology», Kharkiv, Ukraine
  1.  

References

F. Cai, X. Huang, Q. Yang, R. Wei and D. Nagy. Surf. and Coat. Technol. 205, 182 (2010) https://doi.org/10.1016/j.surfcoat.2010.06.033

A.O. Andreev, L.P. Sablev and S.N. Grigor`ev, Вакуумно-дуговые покрытия [Vacuum-arc coatings] (Kharkiv, NNC KIPT, 2010), 318 p. (in Russian).

B. Navinšek, P. Panjan and I. Milošev. Surf. and Coat. Techn. 97, 1-3, 182 (1997) https://doi.org/10.1016/S0257-8972(97)00393-9

S. Veprek, М. Veprek-Heijman, Р. Karvankova and О.Prochazka, Thin Solid Films. 476, 1, pp. 1-29 (2005). https://doi.org/10.1016/j.tsf.2004.10.053

A. D. Pogrebnjak, A. P. Shpak, N.A. Azarenkov and V. M. Beresnev, Physics-Uspekhi 52 (1), 29. https://doi.org/10.3367/UFNe.0179.200901b.0035

H. Zeman, J. Musil and P. Zeman, J. Vac. Sci. Technol. A22 (3), pp. 646-664 (2004).

P.J. Martin, A. Bendavid, J.M. Cairney and M. Hoffman, Surf. and Coat. Technol. 200, 7, pp. 2228-2235 (2005). https://doi.org/10.1016/j.surfcoat.2004.06.012

A. Cavaleiro and J. Hosson, Nanostructured Coatings (Springer New York, NY, 2006), 648 p. https://doi.org/10.1007/978-0-387-48756-4

Sh.-Min Yang, Yi.-Yu.Chang, D.-Yi.Lin, Da-Yu.Wang and W. Wu, Surf. & Coat. Techn. 202, 10, 2176 (2008). https://doi.org/10.1016/j.surfcoat.2007.09.004

Y.V. Kunchenko, V.V. Kunchenko, I.M. Neklyudov, G.N. Kartmazov and A.A. Andreev, PAST, 2 (90), 203, (2007).

G.V. Samsonov and I.M. Vinnitskiy, Тугоплавкие соединения: справочник [Refractory compounds: handbook] (Metallurgiya, Moskow, 1976), 560 p. (in Russian).

G.V. Samsonov, L.A. Dvorina and P.V. Rud`, Cилициды [Silicides] (Metallurgiya, Moskow, 1979), 272 p. (in Russian).

S.A. Firstov, V.F. Gorban`, E.P. Pechkovskiy and N.A. Mameka, Materialovedenie, 11, 26 (2007).

D.V. Shtansky, S.A. Kulinich, E.A. Levashov, A.N. Sheveiko, F.V. Kiriuhancev and J.J. Moore, Thin Solid Films. 420-421, 330 (2002) https://doi.org/10.1016/S0040-6090(02)00942-2

J. Valli, J. Vac. Sci. Techn., A 4, 3007 (1986) https://doi.org/10.1116/1.573616

Published
2022-06-02
Cited
How to Cite
Beresnev, V. M., Maksakova, O. V., Lytovchenko, S. V., Klymenko, S. A., Horokh, D. V., Manohin, A. S., Mazilin, B. O., Chyshkala, V. O., & Stolbovoy, V. A. (2022). Correlating Deposition Parameters with Structure and Properties of Nanoscale Multilayer (TiSi)N/CrN Coatings. East European Journal of Physics, (2), 112-117. https://doi.org/10.26565/2312-4334-2022-2-14

Most read articles by the same author(s)