Numerical study of T-Gate AlGaN/AlInGaN/GaN MOSHEMT with Single and Double Barrier for THz Frequency Applications

  • Amina Noual LIST Laboratory, University of M’Hamed Bougara, Boumerdes, Algeria
  • Messai Zitouni ETA Laboratory, Department of electronics, Faculty of technology, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arréridj, Algeria https://orcid.org/0000-0002-2508-3696
  • Zine-eddine Touati ETA Laboratory, Department of electronics, Faculty of technology, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arréridj, Algeria
  • Okba Saidani ETA Laboratory, Department of electronics, Faculty of technology, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arréridj, Algeria https://orcid.org/0000-0003-0507-5581
  • Abderrahim Yousfi ETA Laboratory, Department of electronics, Faculty of technology, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arréridj, Algeria https://orcid.org/0000-0003-2071-728X
Keywords: TiO2-MOSHEMT, T-gate, Double barrier, AlInGaN Quaternary material, Maximum THz frequency, TCAD-Silvaco

Abstract

This paper presents a comprehensive investigation into the DC analog and AC microwave performance of a state-of-the-art T-gate double barrier AlGaN/AlInGaN/GaN MOSHEMT (Metal Oxide Semiconductor High Electron Mobility Transistor) implemented on a 4H-SiC substrate. The study involves meticulous numerical simulations and an extensive comparison with a single barrier design, utilizing the TCAD-Silvaco software. The observed disparity in performance can be attributed to the utilization of double barrier technology, which enhances electron confinement and current density by augmenting the polarization-induced charge during high-frequency operations. Remarkably, when compared to the single barrier design, the double barrier MOSHEMT exhibits a notable 15% increase in drain current, a 5% increase in transconductance, and an elevated breakdown voltage (VBR) of 140 V in E-mode operation. Furthermore, the radio frequency analysis of the double barrier device showcases exceptional performance, setting new records with a maximum oscillation frequency (fmax) of 1.148 THz and a gain cutoff frequency (ft) of 891 GHz. These impressive results obtained through deck-simulation affirm the immense potential of the proposed double barrier AlGaN/AlInGaN/GaN MOSHEMT for future applications in high-power and terahertz frequency domains.

Downloads

Download data is not yet available.

Author Biography

Amina Noual, LIST Laboratory, University of M’Hamed Bougara, Boumerdes, Algeria

References

M. Haziq, S. Falina, A.A. Manaf, H. Kawarada, and M. Syamsul, “Challenges and Opportunities for High-Power and High-Frequency AlGaN/GaN High-Electron-Mobility Transistor (HEMT) Applications: A Review,” Micromachines, 13, 2133 (2022). https://doi.org/10.3390/mi13122133

B. Mounika, J. Ajayan, S. Bhattacharya, and D. Nirmal, “Recent developments in materials, architectures and processing of AlGaN/GaN HEMTs for future RF and power electronic applications: A critical review,” Micro and Nanostructures, 168, 207317 (2022). https://doi.org/10.1016/j.micrna.2022.207317

S. Xiong, W. Huang, A. Hassan, and R. Zhong, “Simulation study on electrical properties of p-GaN gate normally-off HEMT devices affected by Al mole fraction in AlGaN barrier layer,” Journal of Physics: Conference Series, 2355, 012073 (2022). https://doi.org/10.1088/1742-6596/2355/1/012073

A. Mondal, A. Roy, R. Mitra, and A. Kundu, “Comparative study of variations in gate oxide material of a novel underlap DG MOS-HEMT for analog/RF and high-power applications,” Silicon, 12, 2251-2257 (2020). https://doi.org/10.1007/s12633-019-00316-0

F. Husna, M. Lachab, M. Sultana, V. Adivarahan, Q. Fareed, and A. Khan, “High-Temperature Performance of AlGaN/GaN MOSHEMT with SiO2 Gate Insulator Fabricated on Si (111) Substrate,” IEEE Transactions on Electron Devices, 59, 2424-2429 (2012). https://doi.org/10.1109/TED.2012.2204888

M. Copel, M. Gribelyuk, and E. Gusev, “Structure and stability of ultrathin zirconium oxide layers on Si (001),” Applied Physics Letters, 76, 436-438 (2000). https://doi.org/10.1063/1.125779

A. Pérez-Tomás, A. Fontserè, M. Jennings, and P. Gammon, “Modeling the effect of thin gate insulators (SiO2, SiN, Al2O3 and HfO2) on AlGaN/GaN HEMT forward characteristics grown on Si, sapphire and SiC,” Materials science in semiconductor processing, 16, 1336-1345 (2013). https://doi.org/10.1016/j.mssp.2012.10.014

K. Ahmeda, B. Ubochi, M. Alqaysi, A. Al-Khalidi, E. Wasige, and K.J.M.R. Kalna, “The role of SiN/GaN cap interface charge and GaN cap layer to achieve enhancement mode GaN MIS-HEMT operation,” 115, 113965 (2020). https://doi.org/10.1016/j.microrel.2020.113965

T. Mizutani, M. Ito, S. Kishimoto, and F. Nakamura, “AlGaN/GaN HEMTs with thin InGaN cap layer for normally off operation,” 28, 549-551 (2007). https://doi.org/10.1109/LED.2007.900202

J. Kashiwagi, T. Fujiwara, M. Akutsu, N. Ito, K. Chikamatsu, and K. Nakahara, “Recessed-gate enhancement-mode GaN MOSFETs with a double-insulator gate providing 10-MHz switching operation,” 34, 1109-1111 (2013). https://doi.org/10.1109/LED.2013.2272491

H. Hahn, B. Reuters, A. Wille, N. Ketteniss, F. Benkhelifa, O. Ambacher, H. Kalisch, et al., “First polarization-engineered compressively strained AlInGaN barrier enhancement-mode MISHFET,” 27, 055004 (2012). https://doi.org/10.1088/0268-1242/27/5/055004

N. Ketteniss, L.R. Khoshroo, M. Eickelkamp, M. Heuken, H. Kalisch, R. Jansen, and A. Vescan, “Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates,” 25, 075013 (2010). https://doi.org/10.1088/0268-1242/25/7/075013

F. Sonmez, E. Arslan, S. Ardali, E. Tiras, E. Ozbay, “Determination of scattering mechanisms in AlInGaN/GaN heterostructures grown on sapphire substrate,” Journal of Alloys and Compounds, 864, 158895 (2021). https://doi.org/10.1016/j.jallcom.2021.158895

P. Murugapandiyan, A. Mohanbabu, V.R. Lakshmi, M. Wasim, and K.M. Sundaram, “Investigation of Quaternary Barrier InAlGaN/GaN/AlGaN Double-Heterojunction High-Electron-Mobility Transistors (HEMTs) for High-Speed and High-Power Applications,” J. Electron. Mater. 49, 524-529 (2020). https://doi.org/10.1007/s11664-019-07731-4

R. Brown, D. Macfarlane, A. Al-Khalidi, X. Li, G. Ternent, H. Zhou, I. Thayne, et al., “A sub-critical barrier thickness normally-off AlGaN/GaN MOS-HEMT,” 35, 906-908 (2014). https://doi.org/10.1109/LED.2014.2334394

M. Khan, J. Kuznia, D. Olson, W. Schaff, J. Burm, and M. Shur, “Deep submicron AlGaN/GaN heterostructure field effect transistors for nficrowave and high temperature applications,” in: 52nd Annual Device Research Conference, Boulder, (CO, USA, 1994), pp. 149-150. https://doi.org/10.1109/DRC.1994.1009451

R. Gaska, M. Shur, T. Fjeldly, and A. Bykhovski, “Two-channel AlGaN/GaN heterostructure field effect transistor for high power applications,” Journal of applied physics, 85, 3009-3011 (1999). https://doi.org/10.1063/1.369621

T.-L. Wu, S.-W. Tang, and H.-J. Jiang, “Investigation of recessed gate AlGaN/GaN MIS-HEMTs with double AlGaN barrier designs toward an enhancement-mode characteristic,” Micromachines, 11, 163 (2020). https://doi.org/10.3390/mi11020163

A.B. Khan, M.J. Siddiqui, and S.G. Anjum, “Comparative study of single and double quantum well AlGaN/GaN HEMT structures for high power GHz frequency application,” Materials Today: Proceedings, 4, 10341-10345 (2017). https://doi.org/10.1016/j.matpr.2017.06.377

D.R. Androse, S. Deb, S.K. Radhakrishnan, and E. Sekar, “T-gate AlGaN/GaN HEMT with effective recess engineering for enhancement mode operation,” Materials Today: Proceedings, 45, 3556-3559 (2021). https://doi.org/10.1016/j.matpr.2020.12.1076

N.M. Shrestha, Y. Li, C.-H. Chen, I. Sanyal, J.-H. Tarng, J.-I. Chyi, and S. Samukawa, et al., “Design and simulation of high-performance lattice matched double barrier normally off AlInGaN/GaN HEMTs,” 8, 873-878 (2020). https://doi.org/10.1109/JEDS.2020.3014252

N.M. Shrestha, C.-H. Chen, Z.-M. Tsai, Y. Li, J.-H. Tarng, and S. Samukawa, “Barrier engineering of lattice matched alingan/gan heterostructure toward high performance e-mode operation," in: 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), (Udine, Italy, 2019), pp. 1-4. https://doi.org/10.1109/SISPAD.2019.8870407

R. Singh, T. Lenka, and H. Nguyen, “T-gate shaped AlN/β-Ga2O3 HEMT for RF and high power nanoelectronics,” 2021. https://doi.org/10.36227/techrxiv.15023094.v1

S. Dasgupta, D. F. Brown, F. Wu, S. Keller, J.S. Speck, and U.K. Mishra, “Ultralow nonalloyed ohmic contact resistance to self-aligned N-polar GaN high electron mobility transistors by In (Ga) N regrowth,” Applied Physics Letters, 96, 143504 (2010). https://doi.org/10.1063/1.3374331

T. Zine-eddine, H. Zahra, and M. Zitouni, Journal of Science: Advanced Materials and Devices, “Design and analysis of 10 nm T-gate enhancement-mode MOS-HEMT for high power microwave applications,” 4, 180-187 (2019). https://doi.org/10.1016/j.jsamd.2019.01.001

H. Liu, C. Lee, W. Hsu, T. Wu, H. Huang, S. Chen, Y.C. Yang, et al., “AlGaN/GaN MOS-HEMTs with TiO2 gate dielectric by using non-vacuum ultrasonic spray pyrolysis deposition,” in: 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, 2015, pp. 578-580. https://doi.org/10.1109/PEDS.2015.7203398

H.R. Mojaver, J.-L. Gosselin, and P. Valizadeh, “Use of a bilayer lattice-matched AlInGaN barrier for improving the channel carrier confinement of enhancement-mode AlInGaN/GaN hetero-structure field-effect transistors,” Journal of Applied Physics, 121, 244502 (2017). https://doi.org/10.1063/1.4989836

D. Biswas, H. Fujita, N. Torii, and T. Egawa, “Effect of in composition on electrical performance of AlInGaN/GaN-based metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) on Si,” 125, 225707 (2019). https://doi.org/10.1063/1.5098365

T. Nanjo, M. Suita, T. Oishi, Y. Abe, E. Yagyu, K. Yoshiara, and Y. Tokuda, “Comparison of characteristics of AlGaN channel HEMTs formed on SiC and sapphire substrates,” 45, 424-426 (2009). https://doi.org/10.1049/el.2009.0129

M. Gassoumi, A. Helali, H. Maaref, and M. Gassoumi, “DC and RF characteristics optimization of AlGaN/GaN/BGaN/GaN/Si HEMT for microwave-power and high temperature application,” Results in Physics, 12, 302-306 (2019). https://doi.org/10.1016/j.rinp.2018.11.063

A. Yousfi, H. Bencherif, L. Saidi, et al (2018, December). “Role of High-K and gate engineering in improving Rf/analog performances of In0.2Ga0.8As/Al0.3Ga0.7As HEMT,” in: International Conference on Communications and Electrical Engineering (ICCEE), (IEEE, 2018), pp. 1-4.

I. Gorczyca, T. Suski, N.E. Christensen, and A. Svane, “Band gap bowing in quaternary nitride semiconducting alloys,” Appl. Phys. Lett. 98, 241905 (2011). https://doi.org/10.1063/1.3597795

O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, et al., “Pyroelectric properties of Al (In) GaN/GaN hetero-and quantum well structures,” Journal of physics: condensed matter, 14, 3399 (2002). https://doi.org/10.1088/0953-8984/14/13/302

P.K. Kaushik, S.K. Singh, A. Gupta, A. Basu, and E.Y. Chang, “Impact of Surface States and Aluminum Mole Fraction on Surface Potential and 2DEG in AlGaN/GaN HEMTs,” Nanoscale Research Letters, 16, 159 (2021). https://doi.org/10.1186/s11671-021-03615-x

P.-T. Tu, I. Sanyal, P.-C. Yeh, H.-Y. Lee, L.-H. Lee, C.-I. Wu, et al., “Quaternary Barrier AlInGaN/GaN-on-Si High Electron Mobility Transistor with Record F T-L g Product of 13.9 GHz-μm,” in: 2020 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), (IEEE, Piscataway, NJ, USA, 2020), pp. 130-131.

Z.-e. Touati, Z. Hamaizia, and Z. Messai, “DC and RF characteristics of AlGaN/GaN HEMT and MOS-HEMT,” in: Electrical Engineering (ICEE), 2015 4th International Conference on, (Boumerdes, Algeria, 2015), pp. 1-4. https://doi.org/10.1109/INTEE.2015.7416850

R. Wang, G. Li, J. Verma, B. Sensale-Rodriguez, T. Fang, J. Guo, Z. Hu, et al., “220-GHz quaternary barrier InAlGaN/AlN/GaN HEMTs,” 32, 1215-1217 (2011). https://doi.org/10.1109/LED.2011.2158288

M. Sharma, R. Chaujar, and M. C. A. Engineering, J. I. J. o. R. “Ultrascaled 10 nm T‐gate E‐mode InAlN/AlN HEMT with polarized doped buffer for high power microwave applications,” International Journal of RF and Microwave computer aided engineering, 32, e23057 (2022). https://doi.org/10.1002/mmce.23057

R. Kajitani, K. Tanaka, M. Ogawa, H. Ishida, M. Ishida, and T. Ueda, “Novel high-current density GaN-based normally-off transistor with tensile-strained quaternary InAlGaN barrier,” Japanese Journal of Applied Physics, 54, 04DF09 (2015). https://doi.org/10.7567/JJAP.54.04DF09

J. Jorudas, P. Prystawko, A. Šimukovič, R. Aleksiejūnas, J. Mickevičius, M. Kryśko, P.P Michałowski, et al., “Development of quaternary InAlGaN barrier layer for high electron mobility transistor structures,” Materials, 15, 1118 (2022). https://doi.org/10.3390/ma15031118

Published
2023-12-02
Cited
How to Cite
Noual, A., Zitouni, M., Touati, Z.- eddine, Saidani, O., & Yousfi, A. (2023). Numerical study of T-Gate AlGaN/AlInGaN/GaN MOSHEMT with Single and Double Barrier for THz Frequency Applications. East European Journal of Physics, (4), 216-225. https://doi.org/10.26565/2312-4334-2023-4-27

Most read articles by the same author(s)