Design and Simulation of a Triple Absorber Layer Perovskite Solar Cell for High Conversion Efficiency

  • Abderrahim Yousfi ETA Laboratory, Department of electronics, Faculty of technology, University Mohamed El Bachir El Ibrahimi, Bordj Bou Arréridj, Algeria
  • Okba Saidani ETA Laboratory, Department of electronics, Faculty of technology, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arréridj, Algeria
  • Zitouni Messai ETA Laboratory, Department of electronics, Faculty of technology, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arréridj, Algeria
  • Rafik Zouache Electronic Department, Faculty of Technology, University of Msila, Algeria
  • Mohamed Meddah ETA Laboratory, Department of electronics, Faculty of technology, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arréridj, Algeria
  • Younes Belgoumri ETA Laboratory, Department of electronics, Faculty of technology, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arréridj, Algeria
Keywords: Perovskite solar cell, CsSn0.5Ge0.5I3, Power conversion efficiency, SCAPS-1D


This paper presents a comprehensive simulation study on the influence of a triple absorber layer configuration in a perovskite-based solar cell using the SCAPS-1D software, under AM1.5 illumination. The simulated structure comprises a Cesium Tin-Germanium Triiodide (CsSn0.5Ge0.5I3) absorber layer sandwiched between Indium gallium zinc oxide (IGZO) and Cu2O layers. The main objective of this study is to enhance the power conversion efficiency (PCE) by optimizing the thicknesses of each layer. To validate our simulation results, we compare them with experimental data obtained from existing literature, and we observe a satisfactory agreement between the two. Our findings reveal that the maximum PCE of 28% can be achieved by utilizing specific thickness values for each layer. Specifically, the optimal thicknesses are determined to be 20 nm for the IGZO layer, 200 nm for the Cu2O layer, and 700 nm for the perovskite layer. These optimized thickness values lead to a significant improvement in the PCE of the solar cell, reaching 29%. This achievement highlights the effectiveness of our proposed triple absorber layer configuration and demonstrates its potential to enhance the overall performance of the perovskite-based solar cell. Overall, this study provides valuable insights into the optimization of the absorber layer configuration in perovskite solar cells, leading to improved power conversion efficiency.


Download data is not yet available.


N.J. Jeon, H. Na, E.H. Jung, T.-Y. Yang, Y.G. Lee, G. Kim, H.-W. Shin, et al., “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells,” Nature Energy, 3(8), 682-689 (2018).

N. Li, Z. Zhu, J. Li, A.K.-Y. Jen, L. Wang, “Inorganic CsPb1−xSnxIBr2 for efficient wide‐bandgap perovskite solar cells,” Advanced energy materials, 8(22), 1800525 (2018).

F. Zhang, B. Yang, Y. Li, W. Deng, and R. He, “Extra-long electron–hole diffusion lengths in CH3NH3PbI3−xClx perovskite single crystals,” Journal of Materials Chemistry C, 5(33), 8431-8435 (2017).

Q. Ou, X. Bao, Y. Zhang, H. Shao, G. Xing, X. Li, L. Shao, et al., “Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications,” Nano Materials Science, 1(4), 268-287 (2019).

K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3,” Solid state communications, 127(9-10), 619-623 (2003).

K. Yamada, H. Kawaguchi, T. Matsui, T. Okuda, and S. Ichiba, “Structural Phase Transition and Electrical Conductivity of the Perovskite CH3NH3Sn1-xPbxBr3 and CsSnBr3,” Bulletin of the Chemical Society of Japan, 63(9), 2521-2525 (1990).

M.S. Chowdhury, S.A. Shahahmadi, P. Chelvanathan, S.K. Tiong, N. Amin, K. Techato, N. Nuthammachot, et al., “Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D,” Results in Physics, 16, 102839 (2020).

M.A. Green, E.D. Dunlop, J. Hohl‐Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, “Solar cell efficiency tables (Version 58),” Progress in photovoltaics: research and applications, 29(7), 657-667 (2021).

Y. Jiang, E.J. Juarez-Perez, Q. Ge, S. Wang, M.R. Leyden, L.K. Ono, S.R. Raga, et al., “Post-annealing of MAPbI 3 perovskite films with methylamine for efficient perovskite solar cells,” Materials Horizons, 3(6), 548-555 (2016).

Y.H. Khattak, F. Baig, A. Shuja, S. Beg, and B.M. Soucase, “Numerical analysis guidelines for the design of efficient novel nip structures for perovskite solar cell,” Solar Energy, 207, 579-591 (2020).

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, 131(17), 6050-6051 (2009).

J. Wu, Y. Li, Y. Li, W. Xie, J. Shi, D. Li, S. Cheng, and Q. Meng, “Using hysteresis to predict the charge recombination properties of perovskite solar cells,” Journal of Materials Chemistry A, 9(10), 6382-6392 (2021).

J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, et al., “Efficient perovskite solar cells via improved carrier management,” Nature, 590(7847), 587-593 (2021).

H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, et al., “Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes,” Nature, 598(7881), 444-450 (2021).

T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, et al., “Lead-free germanium iodide perovskite materials for photovoltaic applications,” Journal of Materials Chemistry A, 3(47), 23829-23832 (2015).

M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar, T. Baikie, C. Shi, et al., “Lead‐free halide perovskite solar cells with high photocurrents realized through vacancy modulation,” Advanced Materials, 26(41), 7122-7127 (2014).

B. Wu, Y. Zhou, G. Xing, Q. Xu, H.F. Garces, A. Solanki, T.W. Goh, et al., “Long minority‐carrier diffusion length and low surface‐recombination velocity in inorganic lead‐free CsSnI3 perovskite crystal for solar cells,” Advanced Functional Materials, 27(7), 1604818 (2017).

H. Wei, P. Qiu, Y. Li, Y. He, M. Peng, X. Zheng, and X. Liu, “Challenges and strategies of all-inorganic lead-free halide perovskite solar cells,” Ceramics International, 48(5), 5876-5891 (2022).

M.-G. Ju, M. Chen, Y. Zhou, J. Dai, L. Ma, N.P. Padture, and X.C. Zeng, “Toward eco-friendly and stable perovskite materials for photovoltaics,” Joule, 2(7), 1231-1241 (2018).

T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza, and H.J. Snaith, “Stability of metal halide perovskite solar cells,” Adv. Energy Mater, 5, 1500963 (2015).

M. Chen, M.-G. Ju, H.F. Garces, A.D. Carl, L.K. Ono, Z. Hawash, Y. Zhang, et al., “Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation,” Nature communications, 10(1), 16 (2019).

G.G. Chan, C.M. Koch, and L.H. Connors, “Blood proteomic profiling in inherited (ATTRm) and acquired (ATTRwt) forms of transthyretin-associated cardiac amyloidosis,” Journal of Proteome Research, 16(4), 1659-1668 (2017).

E.L. Unger, L. Kegelmann, K. Suchan, D. Sörell, L. Kortec, and S. Albrecht, “Roadmap and roadblocks for the band gap tunability of metal halide perovskites,” Journal of Materials Chemistry A, 5(23), 11401-11409 (2017).

M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, et al., “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy & environmental science, 9(6), 1989-1997 (2016).

P. Roy, and A. Khare, “Analysis of an efficient and eco-friendly CsGeSnI3 based perovskite solar cell: A theoretical study,” Materials Today: Proceedings, 44, 2997-3000 (2021).

T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Science and Technology of Advanced Materials, (2010).

H. Hosono, J. Kim, Y, Toda, and S. Watanabe, “Transparent amorphous oxide semiconductors for organic electronics: Application to inverted OLEDs,” Proceedings of the National Academy of Sciences, 114(2), 233-238 (2017).

T. Minami, Y. Nishi, T. Miyata, and J.-I. Nomoto, “High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets,” Applied physics express, 4(6), 062301 (2011).

N.K. Singh, and A. Agarwal, “Performance assessment of sustainable highly efficient CsSn0. 5Ge0. 5I3/FASnI3 based Perovskite Solar Cell: A numerical modelling approach,” Optical Materials, 139, 113822 (2023).

S. Bhatt, R. Shukla, C. Pathak, and S. K. Pandey, “Evaluation of performance constraints and structural optimization of a core-shell ZnO nanorod based eco-friendly perovskite solar cell,” Solar Energy, 215, 473-481 (2021).

Raghvendra, R.R. Kumar, and S.K. Pandey, “Performance evaluation and material parameter perspective of eco-friendly highly efficient CsSnGeI3 perovskite solar cell,” Superlattices and Microstructures, 135, 106273 (2019).

M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films, 361-362, 527–532 (2000).

N.K. Singh, A. Agarwal, T. Kanumuri, and T. Varshney, “A Study of an Inorganic-Organic HTM on the Implementation of Lead based PSC Device,” in: 2020 IEEE Students Conference on Engineering & Systems (SCES), (IEEE, 2020). pp. 1-6.

N. Nikfar, and N. Memarian, “Theoretical study on the effect of electron transport layer parameters on the functionality of double-cation perovskite solar cells,” Optik, 258, 168932 (2022).

Y.T. Li, C.F. Han, and J.F. Lin, “Characterization of the electrical and optical properties for a-IGZO/Ag/a-IGZO triple-layer thin films with different thickness depositions on a curved glass substrate,” Optical Materials Express, 9(8), 3414-3431 (2019).

V.K. Jayaraman, A.M. Álvarez, and M. de la luz O. Amador, “Effect of substrate temperature on structural, morphological, optical and electrical properties of IGZO thin films,” Physica E: Low-dimensional Systems and Nanostructures, 86, 164-167 (2017).

S. Bouazizi, W. Tlili, A. Bouich, B.M. Soucase, and A. Omri, “Design and efficiency enhancement of FTO/PC60BM/CsSn0. 5Ge0. 5I3/Spiro-OMeTAD/Au perovskite solar cell utilizing SCAPS-1D Simulator,” Materials Research Express, 9(9), 096402 (2022).

F. Azri, A. Meftah, N. Sengouga, and A. Meftah, “Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell,” Solar energy, 181, 372-378 (2019).

M. Jamil, A. Ali, K. Mahmood, M.I. Arshad, S. Tahir, M.A. Nabi, S. Ikram, N. Amin, and S. Hussain, “Numerical simulation of perovskite/Cu2Zn (Sn1-xGex)S4 interface to enhance the efficiency by valence band offset engineering,” Journal of Alloys and Compounds, 821, 153221 (2020).

How to Cite
Yousfi, A., Saidani, O., Messai, Z., Zouache, R., Meddah, M., & Belgoumri, Y. (2023). Design and Simulation of a Triple Absorber Layer Perovskite Solar Cell for High Conversion Efficiency. East European Journal of Physics, (4), 137-146.