Model of Radiation-Induced Motion of Liquid Inclusions in Crystal

  • Oleksandr P. Kulyk V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-7389-3888
  • Oksana V. Podshyvalova National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine https://orcid.org/0000-0001-9680-9610
  • Mykhailo Yu. Shevchenko V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
  • Victor I. Tkachenko V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0002-1108-5842
  • Iryna V. Hariachevska V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-4630-9519
  • Toru Aoki Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan https://orcid.org/0000-0002-6107-3962
Keywords: Crystal matrix, Point defects, Solution inclusion, Radiation-induced motion, Interfacial boundary, Statistical approach

Abstract

A physical model is formulated for the motion of liquid inclusions in a crystal in the field of forces caused by the presence of radiation point defects. The model is based on a statistical approach to the processes of induced transitions of structural elements of a crystalline matrix at the interfacial boundary with its solution. From the energy principle, an analytical dependence of the velocity of a spherical azimuthally symmetric inclusion on its size is obtained, considering the threshold nature of the motion. It is shown that the theoretical dependence correlates well with experimental results obtained for inclusions of aqueous saturated solution in potassium chloride crystals irradiated by high-energy electrons. The proposed model of the radiation-induced motion of a liquid inclusion is dynamic and allows us to interpret the nature of inclusion velocity changes in the crystal over time to determine the characteristic energy parameters of point defects.

Downloads

Download data is not yet available.

References

N.A. Azarenkov, V.N. Vojevodin, V.G. Kirichenko, G.P. Kovtun, The Journal of Kharkiv National University, Physical series "Nucleus, Particles, Fields". 1(45) 887, 4 (2010), http://nuclear.univer.kharkov.ua/lib/887_1(45)_10_p04-24.pdf

L.I. Barabash, I.N. Vishnevsky, A.A. Groza, A.Ya. Karpenko, P.G. Litovchenko, M.I. Starchik, Problems of Atomic Science and Technology. 2, 182 (2007), https://vant.kipt.kharkov.ua/TABFRAME2.html

A. Karmakar, J. Wang, J. Prinzie, V. Smedt, P. Leroux, Radiation. 1(3), 194 (2021), https://doi.org/10.3390/radiation1030018

V. Gnatyuk, O. Maslyanchuk, O. Kulyk, S. Shishiyanu, T. Aoki, Proceedings of SPIE, 12241, 122410M-1-8 (2022), https://doi.org/10.1117/12.2633410

V. Gnatyuk, S. Levytskyi, O. Maslyanchuk, O. Kulyk, T. Aoki, Proceedings of SPIE, 12126, 1212614-1-8 (2021), https://doi.org/10.1117/12.2615569

A. Lushchik, Ch. Lushchik, E. Vasil’chenko, A.I. Popov, Low Temperature Physics/Fizika Nizkikh Temperatur, 44(4), 357 (2018), https://doi.org/10.1063/1.5030448

N. Itoh, A.M. Stoneham, Materials Modification by Electronic Excitation, (Cambridge University Press, 2000), 520 p.

О.P. Kulyk, O.V Podshyvalova, Bulletin of Kharkiv National Automobile and Highway University, 36, 91 (2007). (In Russian).

A.P. Kulik, O.V. Podshyvalova, and I.G. Marchenko, Problems of Atomic Science and Technology, 2(120), 13 (2019), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2019_2/article_2019_2_13.pdf

О.P. Kulyk, V.I Tkachenko, O.V. Podshyvalova, V.A. Gnatyuk, and T. Aoki, J. Cryst. Growth, 530, 125296-1-7 (2020), https://doi.org/10.1016/j.jcrysgro.2019.125296

O.L. Andrieieva, V.I. Tkachenko, O.P. Kulyk, O.V. Podshyvalova, V.A. Gnatyuk, T. Aoki, East European Journal of Physics, 4, 59 (2021), DOI: 10.26565/2312-4334-2021-4-06

O.P. Kulyk, O.V. Podshyvalova, O.L. Andrieieva, V.I. Tkachenko, V.A. Gnatyuk, T. Aoki, Problems of Atomic Science and Technology, 1(137), 154 (2022), https://doi.org/10.46813/2022-137-154

O.P. Kulyk, L.A. Bulavin, S.F. Skoromnaya, and V.I. Tkachenko, in: Engineering for Sustainable Future. Inter-Academia 2019. Lecture Notes in Networks and Systems(LNNS), vol. 101, edited by A.R. Varkonyi-Koczy (Springer, Cham, 2020) pp. 326-339, https://doi.org/10.1007/978-3-030-36841-8_32

О.P. Kulyk, V.I. Tkachenko, O.L. Andrieieva, O.V Podshyvalova, V.A. Gnatyuk, T. Aoki, in: Research and Education: Traditions and Innovations. INTER-ACADEMIA 2021. Lecture Notes in Networks and Systems, vol. 422 (Springer, Singapure, 2022) pp. 141-158, https://doi.org/10.1007/978-981-19-0379-3_14

Ya.E. Geguzin, and N.N. Ovcharenko, Sov. Phys. Uspekhi, 5(1), 129 (1962), https://dx.doi.org/10.1070/PU1962v005n01ABEH003403

W.W. Mullins, Journal of Applied Physics, 30(1), 77 (1959), https://doi.org/10.1063/1.1734979

Ya.E. Geguzin, Yu.S. Kaganovskij. Diffusion Processes on a Crystal Surface, (Ehnergoatomizdat, Moscow,1984), 128 p. (In Russian).

V.M. Kuklin, The Journal of Kharkov National University, Physical series: Nuclei, Particles, Fields, 933(4/48), 4 (2010). (In Russian).

A. Einstein, Physikalische Gesellschaft Zürich, Mitteilungen 18, 47 (1916).

H.B. Dwight, Tables of Integrals and Other Mathematical Data, 4th edition, (The Macmillan Company, 1961).

A. Betz, Die Naturwissenschaften, XV(46) 905 (1927).

V.S. Kruzhanov, O.V. Podshyvalova, Sov. Solid State Physics, 32(2) 373 (1990). (In Russian).

Published
2023-09-04
Cited
How to Cite
Kulyk, O. P., Podshyvalova, O. V., Shevchenko, M. Y., Tkachenko, V. I., Hariachevska, I. V., & Aoki, T. (2023). Model of Radiation-Induced Motion of Liquid Inclusions in Crystal. East European Journal of Physics, (3), 570-577. https://doi.org/10.26565/2312-4334-2023-3-67