Semi-Empirical Investigation of Electronic, Vibrational and Thermodynamic Properties of Perylene Molecule (C20H12)

  • Abdul Hakim Sh. Mohammed Department of Physics, college of Education for pure sciences, University of Kirkuk, Kirkuk, Iraq
  • Issa Z. Hassan Department of Physics, college of Education for pure sciences, University of Kirkuk, Kirkuk, Iraq
  • Hassan A. Kadhem Ministry of Education, Open Educational College, Kirkuk Center, Iraq
  • Rosure Borhanalden Abdulrahman Department of Physics, College of Science, University of Kirkuk, Kirkuk, Iraq https://orcid.org/0000-0003-3439-5672
Keywords: Perylene, C20H12, Energy of molecule, UV-visible, IR, MNDO-PM3, Thermodynamic

Abstract

This work investigates computationally the spectroscopic and thermodynamics properties of the perylene molecule (C20H12) in the gas phase by utilizing a semi-empirical method [Hyper Chem8.0 and WinMopac7.0] programs, via (MNDO-PM3). This method is providing more simplicity and quick performance. The electronic properties such as total energy, dissociation energy, molecular orbital, ionization potentials, electronic affinity, and energy gap were calculated. However, vibration analysis and UV-visible spectra have been calculated. Moreover, the thermodynamic properties at the standard temperature such as heat of formation, entropy, enthalpy, heat capacity, and Gibbs free energy were calculated.

Downloads

Download data is not yet available.

References

M. Zhu, and C. Yang, Chem. Soc. Rev. 42, 4963–4976 (2013). https://doi.org/10.1039/C3CS35440G

L. Dou, Y. Liu, Z. Hong, G. Li, and Y. Yang, Chemical Reviews, 115, 12633–12665 (2015). https://doi.org/10.1021/acs.chemrev.5b00165

Y. Yao, H. Dong, and W. Hu, Advanced Materials, 28, 4513–4523 (2016). https://doi.org/https://doi.org/10.1002/adma.201503007

H. Bronstein, C.B. Nielsen, B.C. Schroeder, and I. McCulloch, Nature Reviews Chemistry, 4, 66–77 (2020). https://doi.org/10.1038/s41570-019-0152-9

M. Fröbel, F. Fries, T. Schwab, S. Lenk, K. Leo, M.C. Gather, and S. Reineke, Scientific Reports, 8, 9684 (2018). https://doi.org/10.1038/s41598-018-27976-z

D.-H. Kim, A. D’Aléo, X.-K. Chen, A. D. S. Sandanayaka, D. Yao, L. Zhao, T. Komino, E. Zaborova, G. Canard, Y. Tsuchiya, E. Choi, J. W. Wu, F. Fages, J.-L. Brédas, J.-C. Ribierre, and C. Adachi, Nature Photonics, 12, 98–104 (2018). https://doi.org/10.1038/s41566-017-0087-y

K. Tuong Ly, R.-W. Chen-Cheng, H.-W. Lin, Y.-J. Shiau, S.-H. Liu, P.-T. Chou, C.-S. Tsao, Y.-C. Huang, and Y. Chi, Nature Photonics, 11, 63–68 (2017). https://doi.org/10.1038/nphoton.2016.230

D. Baran, N. Gasparini, A. Wadsworth, C. H. Tan, N. Wehbe, X. Song, Z. Hamid, W. Zhang, M. Neophytou, T. Kirchartz, C.J. Brabec, J.R. Durrant, and I. McCulloch, Nature Communications, 9, 2059 (2018). https://doi.org/10.1038/s41467-018-04502-3

M. Ameri, M. Ghaffarkani, R. T. Ghahrizjani, N. Safari, and E. Mohajerani, Solar Energy Materials and Solar Cells, 205, 110251 (2020). https://doi.org/https://doi.org/10.1016/j.solmat.2019.110251

W. Tang, Y. Huang, L. Han, R. Liu, Y. Su, X. Guo, and F. Yan, Journal of Materials Chemistry C, 7, 790–808 (2019). https://doi.org/10.1039/C8TC05485A

Y. Huang, E.-L. Hsiang, M.-Y. Deng, and S.-T. Wu, Light: Science and Applications, 9, 105 (2020). https://doi.org/10.1038/s41377-020-0341-9

T. Okamoto, C. P. Yu, C. Mitsui, M. Yamagishi, H. Ishii, and J. Takeya, Journal of the American Chemical Society, 142, 9083 9096 (2020). https://doi.org/https://doi.org/10.1021/jacs.9b10450

J. Sun, Y. Choi, Y. J. Choi, S. Kim, J.-H. Park, S. Lee, and J. H. Cho, Advanced Materials, 31, 1803831 (2019). https://doi.org/https://doi.org/10.1002/adma.201803831

M. Duan, L. Jiang, B. Shao, C. Feng, H. Yu, H. Guo, H. Chen, and W. Tang, Applied Catalysis B: Environmental, 297, 120439 (2021). https://doi.org/10.1016/j.apcatb.2021.120439

R. Roccanova, A. Yangui, H. Nhalil, H. Shi, M.-H. Du, and B. Saparov, ACS Applied Electronic Materials, 1, 269–274 (2019). https://doi.org/10.1021/acsaelm.9b00015

J. Tao, D. Liu, J. Jing, H. Dong, L. Liu, B. Xu, and W. Tian, Advanced Materials, 33, 2105466 (2021). https://doi.org/10.1002/adma.202105466

J. D. Yuen, V. A. Pozdin, A. T. Young, B. L. Turner, I. D. Giles, J. Naciri, S. A. Trammell, P. T. Charles, D. A. Stenger, and M. A. Daniele, Dyes and Pigments, 174, 108014 (2020). https://doi.org/10.1016/j.dyepig.2019.108014

A. G. Macedo, L. P. Christopholi, A. E. X. Gavim, J. F. de Deus, M. A. M. Teridi, A. R. bin M. Yusoff, and W. J. da Silva, Journal of Materials Science: Materials in Electronics, 30, 15803–15824 (2019). https://doi.org/10.1007/s10854-019-02019-z

M. Zhang, J. Shi, C. Liao, Q. Tian, C. Wang, S. Chen, and L. Zang, Chemosensors, 9, 1 (2020). https://doi.org/10.3390/chemosensors9010001

É. Torres, M. N. Berberan-Santos, and M. J. Brites, Dyes and Pigments, 112, 298–304 (2015). https://doi.org/10.1016/j.dyepig.2014.07.019

M. Zhang, Y. Bai, C. Sun, L. Xue, H. Wang, and Z.-G. Zhang, Science China Chemistry, 65, 462–485 (2022). https://doi.org/10.1007/s11426-021-1171-4

K. Nie, X. Peng, W. Yan, J. Song, and J. Qu, Journal of Bio-X Research, 3, 174–182 (2020). https://doi.org/10.1097/JBR.0000000000000081

A. Sugie, W. Han, N. Shioya, T. Hasegawa, and H. Yoshida, The Journal of Physical Chemistry C, 124, 9765–9773 (2020). https://doi.org/10.1021/acs.jpcc.0c01743

P. Bultinck, T. Kuppens, X. Gironés, and R. Carbó-Dorca, Journal of Chemical Information and Computer Sciences, 43, 1143–1150 (2003). https://doi.org/10.1021/ci0340153

G. Halder, Introduction to chemical engineering thermodynamics, 2nd ed (PHI Learning Pvt. Ltd., 2014).

B. Schrader, ed., Infrared and Raman spectroscopy: methods and applications (John Wiley & Sons, 2008).

S. Aronson, B. Strumeyer, and R. Goodman, The Journal of Physical Chemistry, 76, 921–925 (1972). https://doi.org/10.1021/j100650a024

J. I. Gersten and F. W. Smith, The physics and chemistry of materials (Toronto: Wiley New York, 2001).

C.-G. Zhan, J. A. Nichols, and D. A. Dixon, The Journal of Physical Chemistry A, 107, 4184–4195 (2003). https://doi.org/10.1021/jp0225774

Siyamak Shahab and Masoome Sheikhi, Russian Journal of Physical Chemistry B, 14, 15–18 (2020). https://doi.org/https://doi.org/10.1134/S1990793120010145

W. D. Callister and D. G. Rethwisch, Materials science and engineering: an introduction, 10th ed (New York: Wiley, 2018).

J. Bouwman, P. Castellanos, M. Bulak, J. Terwisscha van Scheltinga, J. Cami, H. Linnartz, and A. G. G. M. Tielens, Astronomy and Astrophysics, 621, A80 (2019). https://doi.org/https://doi.org/10.1051/0004-6361/201834130

R. M. Kubba, M. U. Al-Dilemy, and M. Shanshal, National Journal of Chemistry, 38, 293–310 (2010).

J. M. Dixon, M. Taniguchi, and J. S. Lindsey, Photochemistry and Photobiology, 81, 212–213 (2007). https://doi.org/10.1111/j.1751-1097.2005.tb01544.x

G. Blanquart and H. Pitsch, The Journal of Physical Chemistry A, 111, 6510–6520 (2007). https://doi.org/10.1021/jp068579w

Published
2023-03-02
Cited
How to Cite
Mohammed, A. H. S., Hassan, I. Z., Kadhem, H. A., & Abdulrahman, R. B. (2023). Semi-Empirical Investigation of Electronic, Vibrational and Thermodynamic Properties of Perylene Molecule (C20H12) . East European Journal of Physics, (1), 210-221. https://doi.org/10.26565/2312-4334-2023-1-28