A Study of Photoneutron Reactions Using Statistical Analysis

Keywords: Nuclear level density models, Cross section, γ-ray strength functions, Photoneutron reactions, TALYS

Abstract

The well-known inputs for determining the reaction cross section are nuclear level density (NLD) and -ray strength functions. In this work, effects of -ray strength functions and NLD models on photoneutron reactions of 76,77,78Se isotopes are analyzed by using the latest version of TALYS computer code. For -ray strength functions, macroscopic and microscopic options which are available in the TALYS, are used in the calculations. Kopecky-Uhl and Brink Axel -ray strength function models as macroscopic options, Hartree-Fock BCS tables, Hartree-Fock Bogolyubov tables and Goriely’s hybrid model as microscopic options are preferred. The statistical analysis is carried out to determine the -ray strength function that reproduces the experimental data quite well. And then, calculations of photoneutron cross section are redone by using the determined -ray strength function via the NLD models. The Constant Temperature Model (CTM), Back Shifted Fermi Gas Model (BSFGM) and Generalized Superfluid Model (GSM) are preferred to use in NLD calculations. The predictions are compared with each other and the available experimental data. EXFOR library is used to take all experimental data.

Downloads

Download data is not yet available.

References

A. Koning, S. Hilaire, and S. Goriely, TALYS A Nuclear Reaction Program, User Manual, The Netherlans (2022).

M. Herman, et al., EMPIRE, Rivoli Moduler System for Nuclear Reaction Calculations and Nuclear Data Evaluation, User’s Manual, National Nuclear Data Center (2012).

D. Canbula, International Journal of Pure and Applied Sciences, 7, 314 (2021). https://doi.org/10.29132/ijpas.879068

B. Canbula, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, 138 (2020). https://doi.org/10.19113/sdufenbed.639828

İ.H. Sarpün, H. Özdoğan, K. Taşdöven, H.A. Yalim, and A. Kaplan, Modern Physics Letters A, 34, 1950210 (2019).

P.V. Cuong, T.D. Thiep, L.T. Anh, T.T. An, B.M. Hue, K.T. Thanh, N.H. Tan, et al, Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 479, 68 (2020). https://doi.org/10.1016/j.nimb.2020.06.011

J. Arends, J. Eyink, A. Hegerath, K. G. Hilger, B. Mecking, G. Nöldeke, and H. Rost, Physics Letters B, 98, 423 (1981). https://doi.org/10.1016/0370-2693(81)90444-5

E. Vagena, and S. Stoulos, Nuclear Physics A, 957, 259 (2017). https://doi.org/10.1016/j.nuclphysa.2016.09.007

F. Kitatani, H. Harada, S. Goko, H. Utsunomiya, H. Akimune, H. Toyokawa, and K. Yamada, Journal of nuclear science and technology, 48, 1017 (2011). https://doi.org/10.1080/18811248.2011.9711787

A.M. Goryachev, Issues of theoretical and nuclear physics, 8, 121 (1982). (in Russian)

D. Canbula, and B. Canbula, Nuclear Physics and Atomic Energy, 23, 5 (2022). https://doi.org/10.15407/jnpae2022.01.005

D. Canbula, International Journal of Pure and Applied Sciences, 8, 173 (2022). https://doi.org/10.29132/ijpas.1081660

D. Canbula, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22, 730 (2022). https://doi.org/10.35414/akufemubid.1097069

D. Canbula, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 478, 229 (2020). https://doi.org/10.1016/j.nimb.2020.06.041

B. Canbula, D. Canbula, and H. Babacan, Physical Review C, 91, 044615 (2015). https://doi.org/10.1103/PhysRevC.91.044615

Y. Kucuk, M. B. Yücel, I. Boztosun, T.K. Zholdybayev, B. Canbula, Z. Mukan, and K.M. Ismailov, European Physical Journal A, Hadrons, and nuclei, 58, 97 (2022). https://doi.org/10.1140/epja/s10050-022-00740-8

K. Azhdarli, Y. Kucuk, B. Canbula, T. Zholdybayev, Z. Mukan, B. Emre, B.I. Boztosun, et al, in: Tenth AASPP Workshop on Asian Nuclear Reaction Database Development, (IAEA, Almaty, Kazakhstan, 2019), pp. 53.

B. Canbula, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 391, 73 (2017). https://doi.org/10.1016/j.nimb.2016.11.006

B. Canbula, Celal Bayar University Journal of Science, 13, 445 (2017). https://doi.org/10.18466/cbayarfbe.319917

EXFOR, Brookhaven National Laboratory, National Nuclear Data Center, Database, https://www-nds.iaea.org/exfor/

D.M. Brink, Nuclear Physics, 4, 215 (1957). https://doi.org/10.1016/0029-5582(87)90021-6

P. Axel, Physical Review 126, 671 (1962). https://doi.org/10.1103/PhysRev.126.671

J. Kopecky, and M. Uhl, Physical Review C, 41, 1941 (1990). https://doi.org/10.1103/PhysRevC.41.1941

S. Goriely, S. Hilaire, A.J. Koning, M. Sin, and R. Capote, Physical Review C, 79, 024612 (2009). https://doi.org/10.1103/PhysRevC.79.024612

R. Capote, M. Herman, P. Obložinský, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, et al, Nuclear Data Sheets, 110, 3107 (2009). https://doi.org/10.1016/j.nds.2009.10.004

H.A. Bethe, Reviews of Modern Physics, 9, 69 (1937). https://doi.org/10.1103/RevModPhys.9.69

A. Gilbert, and A.G.W. Cameron, Canadian Journal of Physics, 43, 1446 (1965). https://doi.org/10.1139/p65-139

W. Dilg, W. Schantl, H. Vonach, and M. Uhl, Nuclear Physics A, 217, 269 (1973). https://doi.org/10.1016/0375-9474(73)90196-6

A.V. Ignatyuk, K.K. Istekov, and G.N. Smirenkin, (Kernforschungszentrum Karlsruhe GmbH, Germany, 1979). https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=11512726

Published
2022-12-06
Cited
How to Cite
Canbula, D., & Canbula, B. (2022). A Study of Photoneutron Reactions Using Statistical Analysis. East European Journal of Physics, (4), 99-103. https://doi.org/10.26565/2312-4334-2022-4-08