Application of Particular Solutions of the Burgers Equation to Describe the Evolution of Shock Waves of Density of Elementary Steps

  • Oksana Andrieieva V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0001-9757-8519
  • Victor Tkachenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine; V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-1108-5842
  • Oleksandr Kulyk V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-7389-3888
  • Oksana Podshyvalova National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine https://orcid.org/0000-0001-9680-9610
  • Volodymyr Gnatyuk V.E. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine https://orcid.org/0000-0002-7389-3888
  • Toru Aoki Research Institute of Electronics, Shizuoka University, Johoku, Naka-ku, Hamamatsu, Japan https://orcid.org/0000-0002-6107-3962
Keywords: Burgers equation, analytical solutions, zero boundary conditions, shock wave, decay

Abstract

Particular solutions of the Burgers equations (BE) with zero boundary conditions are investigated in an analytical form. For values of the shape parameter  greater than 1, but approximately equal to 1, the amplitude of the initial periodic perturbations depends nonmonotonically on the spatial coordinate, i.e. the initial perturbation can be considered as a shock wave. Particular BE solutions with zero boundary conditions describe a time decrease of the amplitude of initial nonmonotonic perturbations, which indicates the decay of the initial shock wave. At large values of the shape parameter , the amplitude of the initial periodic perturbations depends harmoniously on the spatial coordinate. It is shown that over time, the amplitude and the spatial derivative of the profile of such a perturbation decrease and tend to zero. Emphasis was put on the fact that particular BE solutions can be used to control numerical calculations related to the BE-based description of shock waves in the region of large spatial gradients, that is, under conditions of a manifold increase in spatial derivatives. These solutions are employed to describe the profile of a one-dimensional train of elementary steps with an orientation near <100>, formed during the growth of a NaCl single crystal from the vapor phase at the base of a macroscopic cleavage step. It is shown that the distribution of the step concentration with distance from the initial position of the macrostep adequately reflects the shock wave profile at the decay stage. The dimensionless parameters of the wave are determined, on the basis of which the estimates of the characteristic time of the shock wave decay are made.

Downloads

Download data is not yet available.

References

T.L. Einstein, in: Handbook of Crystal Growth, vol. 1,edited by T. Nishinaga, (Elsevier, Amsterdam, 2015), pp.215-264, https://doi.org/10.1016/B978-0-444-56369-9.00005-8

N. Akutsu, and T. Yamamoto, in: Handbook of Crystal Growth,vol. 1, edited by T. Nishinaga (Elsevier, Amsterdam, 2015), pp.265-313, https://doi.org/10.1016/B978-0-444-56369-9.00006-X

C. Misbah, O. Pierre-Louis, and Y. Saito, Rev. Modern Phys. 82, 981 (2010), https://doi.org/10.1103/RevModPhys.82.981

A.A. Chernov, J. Optoelectron. Adv. M. 5(3) 575 (2003), https://old.joam.inoe.ro/arhiva/pdf5_3/Chernov.pdf

T. Yamaguchi, K. Ohtomo, S. Sato, N. Ohtani, M. Katsuno, T. Fujimoto, S. Sato,H. Tsuge, and T. Yano, J. Cryst. Growth, 431, 24 (2015), https://doi.org/10.1016/j.jcrysgro.2015.09.002

T. Mitani, N. Komatsu, T. Takahashi, T. Kato, S. Harada, T. Ujihara, T. Ujihara, Y. Matsumoto, K. Kurashige, and H. Okumura, J. Cryst. Growth, 423, 45 (2015),https://doi.org/10.1016/j.jcrysgro.2015.04.032

A. Gura, G. Bertino, B. Bein, and M. Dawber, Appl. Phys. Lett. 112(18), 182902-1-4 (2018), https://doi.org/10.1063/1.5026682.

H. Morkoc, Handbook of Nitride Semiconductors and Devices, (Wiley-VCH, New-York, 2008), pp.1257.

I. Berbezier, and A. Ronda, Surf. Sci. Rep. 64(2), 47 (2009), https://doi.org/10.1016/j.surfrep.2008.09.003

I. Goldfarb, Nanotechnology, 18(33), 335304-1-7 (2007), https://doi.org/10.1088/0957-4484/18/33/335304

J. Bao, O. Yasui, W. Norimatsu, K. Matsuda, and M. Kusunoki, Appl. Phys. Lett. 109(8), 081602-1-5 (2016), https://doi.org/10.1063/1.4961630

M. Hou, Z. Qin, L. Zhang, T. Han, M. Wang, F. Xu, X. Wang, T. Yu, Z. Fang, and B. Shen, Superlattices Microstruct. 104, 397 (2017), https://doi.org/10.1016/j.spmi.2017.02.051

K. Matsuoka, S. Yagi, and H. Yaguchi, J. Cryst. Growth, 477, 201 (2017), https://doi.org/10.1016/j.jcrysgro.2017.05.021

M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56(9), 889 (1986), https://doi.org/10.1103/PhysRevLett.56.889

J.P. v.d. Eerden, and H. Müller-Krumbhaar, Phys. Rev. Lett. 579(19), 2431 (1986), https://doi.org/10.1103/PhysRevLett.57.2431

S. Stoyanov, Jpn. J. Appl. Phys. 30(1R), 1 (1991), https://doi.org/10.1143/JJAP.30.1

M. Vladimirova, A. De Vita, and A. Pimpinelli, Phys. Rev. B. 64(24), 24520-1-6 (2001), https://doi.org/10.1103/PhysRevB.64.245420.

C. Duport, P. Nozières, and J. Villain, Phys. Rev. Lett. 74(1), 134 (1995), https://doi.org/10.1103/PhysRevLett.74.134

I. Derényi, C. Lee, and A.-L. Barabási, Phys. Rev. Lett. 80(7), 1473 (1998), https://doi.org/10.1103/PhysRevLett.80.1473

J.B. Keller, H.G. Cohen, and G.J. Merchant, J. Appl. Phys. 73(8), 3694 (1993), https://doi.org/10.1063/1.352928

H. Popova, F. Krzyzewski, M.A. Załuska-Kotur, and V. Tonchev, Cryst. Growth Des. 20(11), 7246 (2020), https://doi.org/10.1021/acs.cgd.0c00927

F.C. Frank, in: Growth and Perfection of Crystals, edited by R.H. Doremus, B.W. Roberts, and D. Turnbull (John Wiley& Sons, New York, 1958), pp. 411.

N. Cabrera, and D.A. Vermilyea, in: Growth and Perfection of Crystals, edited by B.W. Roberts, and D. Turnbull (John Wiley& Sons, New York, 1958), pp.393.

M.J. Lighthill, and G.B. Whitham, Proc. R. Soc. Lond., Ser. A. 229(1178), 281 (1955), https://doi.org/10.1098/rspa.1955.0088

A.A. Chernov, Sov. Phys. Uspekhi. 4(1), 116 (1961),http://dx.doi.org/10.1070/PU1961v004n01ABEH003328

Ya.E. Geguzin, and N.N. Ovcharenko, Sov. Phys. Uspekhi. 5(1), 129(1962), https://dx.doi.org/10.1070/PU1962v005n01ABEH003403.

Yu.S. Kaganovskii, V.V. Grischenko, and J. Zikkert, Sov. Phys. Crystallogr. 28(3), 321 (1983). (in Russian).

О.P. Kulyk, V.I Tkachenko, O.V. Podshyvalova, V.A. Gnatyuk, and T. Aoki, J. Cryst. Growth, 530, 125296-1-7 (2020), https://doi.org/10.1016/j.jcrysgro.2019.125296

V.G. Bar'yakhtar, A.E. Borovik, Yu.S. Kaganovskii. JETP Lett. 47(8), 474 (1988), http://jetpletters.ru/ps/1095/article_16544.pdf

J.M. Burgers, Adv. Appl. Mech. 1, 171 (1948), https://doi.org/10.1016/S0065-2156(08)70100-5

L. Landau, and E. Lifshitz, Course of Theoretical Physics, vol. 6, edited by L.D. Landau and E.M. Lifshitz (Elsevier,-Oxford, 2001), pp. 539, http://www.worldcat.org/isbn/0750627670

G.M. Zaslavsky, and R.Z. Sagdeev, An Introduction to Nonlinear Physics: From Pendulum to Turbulence and Chaos, (Nauka, Moscow, 1988), pp. 368. (in Russian), https://www.twirpx.com/file/86242

O.V. Rudenko, and S.I. Soluyan, Theoretical Foundations of Nonlinear Acoustics, (Nauka, Moscow, 1975), pp. 287. (in Russian), https://www.twirpx.com/file/255873.

K.A. Naugolnykh, and L.A. Ostrovsky, Nonlinear Wave Processes in Acoustics, (Nauka, Moscow, 1990), pp. 237, https://www.twirpx.com/file/532109. (in Russian)

.E. Hopf, Comm. Pure Appl. Math. 3(3), 201 (1950), https://doi.org/10.1002/cpa.3160030302

J.D. Cole, Quart. Appl. Math. 9(3), 225 (1951), https://doi.org/10.1090/QAM/42889

N.M. Ryskin, D.I. Trubetskov, Nonlinear Waves, (Fizmatlit, Moscow, 2000), pp. 272, https://www.twirpx.com/file/276239. (in Russian)

A.V. Samokhin, Civil Aviation High Technologies. 220, 82 (2015), https://avia.mstuca.ru/jour/article/view/308. (In Russian)

A.V. Zaitsev, and V.N. Kudashov, Scientific Journal NRU ITMO. Processes and Food Production Equipment, 2(20), https://www.processes.ihbt.ifmo.ru

O. Kulyk, I. Hariachevska, O. Lisina, V. Tkachenko, O. Andrieieva, O. Podshyvalova, V. Gnatyuk, and T. Aoki, in: Reiwa 1st Biomedicine Dental Engineering Collaborative Research Base Results Report Meeting (Book of Abstracts, Yokohama, 2020), Presentation No 1-11, p. 37.

A.P. Kulik, O.V. Podshyvalova, and I.G. Marchenko, Problems of Atomic Science and Technology, 2(120), 13 (2019), https://vant.kipt.kharkov.ua/ARTICLE/VANT_2019_2/article_2019_2_13.pdf

O.P. Kulyk, L.A. Bulavin, S.F. Skoromnaya, and V.I. Tkachenko, in: Engineering for Sustainable Future. Inter-Academia 2019. Lecture Notes in Networks and Systems(LNNS), vol. 101, edited by A.R. Varkonyi-Koczy (Springer, Cham, 2020) pp. 326-339, https://doi.org/10.1007/978-3-030-36841-8_32

K.W. Keller, J. Cryst. Growth, 74(1), 161 (1986), https://doi.org/10.1016/0022-0248(86)90260-5

A.H. Ostadrahimi, H. Dabringhaus, and K. Wandelt, Surf. Sci. 521(3), 139 (2002), https://doi.org/10.1016/S0039-6028(02)02311-7

B.H. Zimm, and J.E. Mayer, J. Chem. Phys. 12(9), 362 (1944), https://doi.org/10.1063/1.1723958

Yu.S. Kaganovskii, O.P. Kulyk, in: VIIth European Conference on Surface Crystallography and Dynamics (ECSCD-7), Book of Abstracts, (Leiden, 2001), pp. 52.

Published
2021-12-10
Cited
How to Cite
Andrieieva, O., Tkachenko, V., Kulyk, O., Podshyvalova, O., Gnatyuk, V., & Aoki, T. (2021). Application of Particular Solutions of the Burgers Equation to Describe the Evolution of Shock Waves of Density of Elementary Steps. East European Journal of Physics, (4), 59-67. https://doi.org/10.26565/2312-4334-2021-4-06