Fundamental Physical Properties of LiInS2 and LiInSe2 Chalcopyrite Structured Solids

Keywords: Ab-initio calculations, electronic properties, optical properties, elastic constants

Abstract

For the couple of chalcopyrite compounds, we have theoretically studied the various properties for example structural, electronic optical and mechanical properties. The band structure curve, the density of states as well as the total energy have been investigated with the help of ATK-DFT by using the pseudo-potential plane wave method. For the LiInS2 and LiInSe2 chalcopyrites, we have found that these compounds possess direct band gap; which is 3.85 eV and 2.61 eV for LiInS2 and LiInSe2 respectively. It shows that the band gap is decreasing from ‘S’ to ‘Se’ as well as the B/G ratio called Pugh’s ratio is 2.10 for LiInS2 and 2.61 for LiInSe2 so these compounds are ductile in nature also these compounds are found to be mechanically stable. The study of this work display that the couple of these chalcopyrite compounds can be the promising candidate for the substitution of absorbing layer in the photovoltaic devices.

Downloads

Download data is not yet available.

References

E. Becquerel, Compt. Rend. 9, 561 (1839).

P.C. Deshmukh, and S. Venkataraman, 100 years of Einstein’s ‎ photoelectric‎effect, Bulletin of Indian Physics Teachers Association. (2006).

S.M. Sze, Semiconductor devices: physics and technology, (Wiley John & Sons, 2008).

D.M. Chapin, C.S. Fuller, and G.L. Pearson, J. Applied Physics, 25, 676-677 (1954), https://doi.org/10.1063/1.1721711.

M. Jing, J. Li, and K. Liu, IOP Conference Series: Earth and Environmental Science IOP Publication, 128, 012087 (2018), https://doi.org/10.1088/1755-1315/128/1/012087.

Q. Lei, Z. Chunmei, and C. Qiang, Sci. Technol. 16, 45 (2014), https://doi.org/10.1088/1009-0630/16/1/10

A.H. Reshak, M.G. Brik, and S. Auluck, J. Applied Physics, 116, 103501 (2014), https://doi.org/10.1063/1.4894829.

J.E. Jaffe, and A. Zunger, Physical Review B, 28, 5822 (1983), https://doi.org/10.1103/PhysRevB.28.5822.

C. Rincon, and C. Bellabarba, Physical Review B, 33, 7160 (1986), https://doi.org/10.1103/PhysRevB.33.7160.

S. Sharma, A.S. Verma, R. Bhandari, and V.K. Jindal, Computational materials science, 86, 108-117 (2014), https://doi.org/10.1016/j.commatsci.2014.01.021.

A.H. Reshak, and M.G. Brik, J. Alloys and Compounds, 675, 355-363 (2016), https://doi.org/10.1016/j.jallcom.2016.03.104.

J.L. Shay, L.M. Schiavone, E. Buehler, and J.H. Wernick, J. Applied Physics, 43, 2805-2810 (1972), https://doi.org/10.1063/1.1661599.

B.F. Levine, Physical Review B, 7, 2600 (1973), https://doi.org/10.1103/PhysRevB.7.2600.

A. Sajid, S. Sajid, G. Murtaza, R. Khenata, A. Manzar, and S.B. Omran, J. Optoelectronics and Advanced Materials, 16, 76-81 (2014), https://joam.inoe.ro/articles/electronic-structure-and-optical-properties-of-chalcopyrite-cuyz2-yal-ga-in-zs-se-an-ab-initio-study/fulltext.

A. Rockett, and R.W. Birkmire, J. Applied Physics, 70, 81-97 (1991), https://doi.org/10.1063/1.349175.

M. Magesh, A. Arunkumar, P. Vijayakumar, G.A. Babu, and P. Ramasamy, Optics and Laser Technology, 56, 177-181 (2014), https://doi.org/10.1016/j.optlastec.2013.08.003.

C.G. Ma, and M.G. Brik, Solid State Communications, 203, 69-74 (2015), https://doi.org/10.1016/j.ssc.2014.11.021.

A.V. Kosobutsky, and Y.M. Basalaev, Solid State Communications, 199, 17-21 (2014), https://doi.org/10.1016/j.ssc.2014.08.015.

A.V. Kosobutsky, and Y.M. Basalaev, J. Physics and Chemistry of Solids, 71, 854-861 (2010), https://doi.org/10.1016/j.jpcs.2010.03.033.

A.V. Kosobutsky, Y.M. Basalaev, and A.S. Poplavnoi, Physica Status Solidi (b), 246, 364-371 (2009), https://doi.org/10.1002/pssb.200844283.

B. Lagoun, T. Bentria, and B. Bentria, Computational materials science, 68, 379-383 (2013), https://doi.org/10.1016/j.commatsci.2012.11.010.

L. Isaenko, P. Krinitsin, V. Vedenyapin, A. Yelisseyev, A. Merkulov, J.J. Zondy, and V. Petrov, Crystal Growth and Design, 5, 1325–1329 (2005), https://doi.org/10.1021/cg050076c.

M.S. Yaseen, G. Murtaza, and R.M.A. Khalil, Current Applied Physics, 18, 1113-1121 (2018), https://doi.org/10.1016/j.cap.2018.06.008.

Atomistic Toolkit-Virtual Nano lab (ATK-VNL) Quantum wise Simulator, Version. 2014.3, http://quantumwise.com/.

Y.J. Lee, M. Brandbyge, M.J. Puska, J. Taylor, K. Stokbro, and R.M. Nieminen, Physical Review B, 69, 125409 (2004), https://doi.org/10.1103/PhysRevB.69.125409.

K. Schwarz, J. Solid-State Chemistry, 176, 319-328 (2003), https://doi.org/10.1016/S0022-4596(03)00213-5.

H.J. Monkhorst, and J.D. Pack, Physical Review B, 13, 5188 (1976), https://doi.org/10.1103/PhysRevB.13.5188.

A. Khan, M. Sajjad, G. Murtaza, and A. Laref, Zeitschrift für Naturforschung A, 73, 645-655 (2018), https://doi.org/10.1515/zna-2018-0070.

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Petrov, and J.J. Zondy, J. Non-Crystalline Solids, 352, 2439-2443 (2006), https://doi.org/10.1016/j.jnoncrysol.2006.03.045.

R. Khenata, A. Bouhemadou, M. Sahnoun, A.H. Reshak, H. Baltache, and M. Rabah, Computational Materials Science, 38, 29 38 (2006), https://doi.org/10.1016/j.commatsci.2006.01.013.

J. Sun, H.T. Wang, N.B. Ming, Applied Physics Letters, 84, 4544-4546 (2004), https://doi.org/10.1063/1.1758781.

B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, and P. C. Schmidt, Intermetallics, 11, 23-32 (2003), https://doi.org/10.1016/S0966-9795(02)00127-9.

H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng, Computational Materials Science, 44, 774-778 (2008), https://doi.org/10.1016/j.commatsci.2008.05.026.

D.G. Pettifor, Materials Science and Technology, 8, 345-349 (1992), https://doi.org/10.1179/mst.1992.8.4.345.

S.F. Pugh, Philosophical Magazine and J. Science, 45, 823-843 (1954), https://doi.org/10.1080/14786440808520496.

R. Hill, Proceedings of the Physical Society. Section A, 65, 349 (1952), https://doi.org/10.1088/0370-1298/65/5/307.

T. Lantri, S. Bentata, B. Bouadjemi, W. Benstaali, B. Bouhafs, A. Abbad, and A. Zitouni, J. Magnetism and Magnetic Materials 419, 74-83 (2016), https://doi.org/10.1016/j.jmmm.2016.06.012.

S. Sharma, A.S. Verma, and V.K. Jindal, Materials Research Bulletin, 53, 218-233 (2014), https://doi.org/10.1016/j.materresbull.2014.02.021.

C.M.I. Okoye, J. Physics: Condensed Matter, 15, 5945-5958 (2003), https://doi.org/10.1088/0953-8984/15/35/304.

Citations

Electronic, optical, and thermoelectric efficiency of novel Li-based ternary chalcogenides: First-principles study
Salman Khan Muhammad, Gul Banat, Salah Mohamed Abdelhay, Maisarah Aziz Siti, Benabdellah Ghlamallah & Abbas Faheem (2024) Chemical Physics Letters
Crossref

First-principles study of the dynamical, mechanical, optoelectronic, and thermoelectric properties of Sc2BaX4 (X = S, Se) chalcogenides for sustainable energy applications
Ali Ahmad, Ahmad Shayan, Hashir Muhammad, Karouchi Mohamed, Khan Asif Nawaz & Shakir Imran (2026) Chemical Physics
Crossref

Thermodynamic properties of chalcogenide and pnictide ternary tetrahedral semiconductors
Pal S., Sharma D., Chandra M., Mittal M., Singh P., Lal M. & Verma A. S. (2024) Chalcogenide Letters
Crossref

Theoretical insights into the electronic structures and transport properties of Ag3TaX4 (X = S, Se, Te) compounds for energy applications
Rashid Md. Abdur, Aman Md. Sharear, Mondal Bipanko Kumar & Hossain Jaker (2026) Next Materials
Crossref

Rare earth-based oxides double perovskites A2NiMnO6 (A= La and gd): Applications in magneto-caloric, photo-catalytic and thermoelectric devices
Rani Monika, Kamlesh Peeyush Kumar, Kumawat Sunil, Anuradha , Rani Upasana, Arora Gunjan & Verma Ajay Singh (2024) Physica B: Condensed Matter
Crossref

Published
2021-09-28
Cited
How to Cite
Kumari, J., Tomar, S., Sukhendra, S., Choudharya, B. L., Rani, U., & Verma, A. S. (2021). Fundamental Physical Properties of LiInS2 and LiInSe2 Chalcopyrite Structured Solids. East European Journal of Physics, (3), 62-69. https://doi.org/10.26565/2312-4334-2021-3-09