Investigations of Lead Free Halides in Sodium Based Double Perovskites Cs2NaBiX6(X=Cl, Br, I): an Ab Intio Study
Abstract
Despites the excellent merits of lead based perovskite optoelectronic devices; their unstable nature and toxicity still present a bottleneck for practical applications. Double perovskite has emerged as a candidate for optoelectronics and photovoltaic application because of its nontoxic behaviour and stability in air. We have presented ab-initio study of Cs2NaBiX6(X=Cl, Br, I) lead free halide double perovskites. The calculation is carried out using the FP-LAPW method in the DFT framework within PBE potential using the WIEN2k code. The structural, electronic and optical properties of Cs2NaBiI6, Cs2NaBiBr6 and Cs2NaBiCl6 have been analysed. We have obtained the band gap of 2.0, 2.6 and 3.7 for Cs2NaBiI6, Cs2NaBiBr6 and Cs2NaBiCl6 respectively. Throughout the study, we have shown that the variation in the structure of double perovskite within Cs2NaBiX6(X=Cl, Br, I) that leads to the variation in band gap, density of states and in optical properties such as extinction coefficient, absorption spectra, optical reflectivity, dielectric coefficient, refractive index that shows the variety of this material for optoelectronic devices and other purposes.
Downloads
References
H. Tang, S. He, and C. Peng, Nanoscale Research Letters, 12, 410 (2017), https://doi.org/10.1186/s11671-017-2187-5
F. Giustino, and H.J. Snaith, ACS Energy Letters, 1, 1233 (2016), https://doi.org/10.1021/acsenergylett.6b00499
Y. Dang, C. Zhong, G. Zhang, D. Ju, L. Wang, S. Xia, H. Xia, and X. Tao, Chem. Mater. 28, 6968 (2016), https://doi.org/10.1021/acs.chemmater.6b02653
C. Lee, J. Hong, A. Stroppa, M.H. Whangbo, and J.H. Shim, RSC Adv. 5, 78701 (2015), https://doi.org/10.1039/C5RA12536G
T. Zhao, W. Shi, J. Xi, D. Wang, and Z. Shuai, Sci. Rep. 7, 19968 (2016), https://doi.org/10.1038/srep19968
H.S. Jung, and N.G. Park, Small, 11, 10 (2015), https://doi.org/10.1002/smll.201402767
A.H. Slavney, R.W. Smaha, I.C. Smith, A. Jaffe, D. Umeyama, and H.I. Karunadasa, Inorg. Chem. 56, 46 (2017), https://doi.org/10.1021/acs.inorgchem.6b01336
F. Giustino, and H.J. Snaith, ACS Energy Lett. 1, 1233 (2016), https://doi.org/10.1021/acsenergylett.6b00499
J. Cheng, and Z.Q. Yang, Physica Status Solidi B, 243, 1151 (2006), https://doi.org/10.1002/pssb.200541381
H. Wu, Phys. Rev. B, 64, 125126 (2001), https://doi.org/10.1103/PhysRevB.64.125126
Y. Shimakawa, M. Azuma, and N. Ichikawa, Materials, 4, 153 (2011), https://doi.org/10.3390/ma4010153
P. Blaha, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, an augmented plane wave plus local orbitals program for calculating crystal properties (Vienna, Austria) 2008.
P. Hohenberg, and W. Kohn, Phys. Rev. 136, B864 (1964), https://doi.org/10.1103/PhysRev.136.B864
W. Kohn, and L.J. Sham, Phys. Rev. 140, A1133 (1965), https://doi.org/10.1103/PhysRev.140.A1133
J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008), https://doi.org/10.1103/PhysRevLett.100.136406
J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), https://doi.org/10.1103/PhysRevLett.77.3865
H.J. Monkhorst, and J.D. Pack, Phys. Rev. B, 13, 5188 (1976), https://doi.org/10.1103/PhysRevB.13.5188
F. Birch, Physical Review, 71, 809 (1947), https://doi.org/10.1103/PhysRev.71.809
F.D. Murnaghan, Proc. Natl. Acad. Sci. USA, 30, 244 (1994), https://dx.doi.org/10.1073%2Fpnas.30.9.244
E.E. Eyi, and S. Cabuk, Philosophical Magazine, 90, 2965 (2010), https://doi.org/10.1080/14786431003752159
K.E. Babu, N. Murali, K.V. Babu, P.T. Shibeshi, and V. Veeraiah, Acta Physica Polonica A, 125, 1179 (2014), http://dx.doi.org/10.12693/APhysPolA.125.1179
M.L. Ali, and M.Z. Rahaman, Int. J. Mater. Sci. Appl. 5, (2016) 202-206, https://doi.org/10.11648/j.ijmsa.20160505.14
S. Choudhary, A. Shukla J. Chaudhary, and A.S. Verma, Int. J. Energy Res. 44, 11614 (2020), https://doi.org/10.1002/er.5786
R. Gautam, P. Singh, S. Sharma, S. Kumari, and A.S. Verma, Superlattice Microst. 85, 859 (2015), https://doi.org/10.1016/j.spmi.2015.07.014
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).