Modeling and Simulation of Lead-Free Perovskite Solar Cell Using SCAPS-1D

  • Omeiza Abdulmalik Muhammed Department of Physics, Bayero University, Kano, Nigeria
  • Eli Danladi Department of Physics, Nigerian Defence Academy; Department of Physical Sciences, Greenfield University, Kaduna, Nigeria https://orcid.org/0000-0001-5109-4690
  • Peter Henry Boduku Department of Physics, Kaduna State University, Kaduna, Nigeria
  • Jamila Tasiu Department of Physics, Kaduna State University, Kaduna, Nigeria
  • Muhammad Sani Ahmad Department of Physics, Kaduna State University, Kaduna, Nigeria
  • Nuhu Usman Department of Physical Sciences, Greenfield University, Kaduna, Nigeria
Keywords: electron transport layer, hole transport layer, perovskite solar cell, photovoltaic, SCAPS-1D, copper iodide

Abstract

In this work, the effect of some parameters on tin-based perovskite (CH3NH3SnI3) solar cell were studied through device simulation with respect to adjusting the doping concentration of the perovskite absorption layer, its thickness and the electron affinities of the electron transport medium and hole transport medium, as well as the defect density of the perovskite absorption layer and hole mobility of hole transport material (HTM). A device simulator; the one-dimensional Solar Cells Capacitance Simulator (SCAPS‑1D) program was used for simulating the tin-based perovskite solar cells. The current-voltage (J-V) characteristic curve obtained by simulating the device without optimization shows output cell parameters which include; open circuit voltage (Voc) = 0.64V, short circuit current density (Isc) = 28.50mA/, fill factor (FF) = 61.10%, and power conversion efficiency (PCE) = 11.30% under AM1.5 simulated sunlight of 100mW/cm2 at 300K. After optimization, values of the doping concentration, defect density, electron affinity of electron transport material and hole transport material were determined to be: 1.0x1016cm-3, 1.0x1015cm-3, 3.7 eV and 2.3 eV respectively. Appreciable values of solar cell parameters were obtained with  Jsc of 31.38 mA/cm2, Voc of 0.84 V, FF of 76.94% and PCE of 20.35%. when compared with the initial device without optimization, it shows improvement of ~1.10 times in Jsc, ~1.80 times in PCE, ~1.31 times in Voc and ~1.26 time in FF. The results show that the lead-free CH3NH3SnI perovskite solar cell which is environmentally friendly is a potential solar cell with high theoretical efficiency of 20.35%.

Downloads

Download data is not yet available.

References

Z. Wang, Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz, and H.J. Snaith, Nature Energy, 2, 17135 (2017), https://doi.org/10.1038/nenergy.2017.135.

Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, X. Zhang, C. Zhao, and S. Liu, Advanced Materials, 27, 5176–5183 (2015), https://doi.org/10.1002/adma.201502597.

D. Yang, Z. Yang, W. Qin, Y. Zhang, S. Liu, and C. Li, Journal of Materials Chemistry A, 3, 9401–9405 (2015), https://doi.org/10.1039/C5TA01824B.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Journal of the American Chemical society, 131(17), 6050-6051 (2009), https://doi.org/10.1021/ja809598r.

D. Eli, M.Y. Onimisi, S. Garba, R.U. Ugbe, J.A. Owolabi, O.O. Ige, G.J. Ibeh, and A.O. Muhammed, J. Nig. Soc. Phys. Sci. 1, 72–81 (2019), https://doi.org/10.46481/jnsps.2019.13.

NREL Efficiency chart, (2019), https://www.nrel.gov/pv/assets/images/efficiencychart- 20180716.jpg.

D. Hui-Jing, W. Wei-Chao, and Z. Jian-Zhuo, Chinese Phys. B, 25, 108802 (2016), https://doi.org/10.1088/1674-1056/25/10/108802.

A. Farhana, M. Rafee, S.S. Sakin, and M.U. Saeed, International Journal of Photoenergy, 9846310 (2017), https://doi.org/10.1155/2017/9846310.

Syed Zulqarnain Haider, Hafeez Anwar, and Mingqing Wang, Semicond. Sci. Technol. 33(3), 035001 (2018), https://orcid.org/0000-0002-0473-850X.

F. Hao, C.C. Stoumpos, R.P.H. Chang, and M.G. Kanatzidis, J. Am. Chem. Soc. 136(22), 8094-8099 (2014), https://doi.org/10.1021/ja5033259.

F. Hao, C.C. Stoumpos, P. Guo, N. Zhou, T.J. Marks, R.P.H. Chang, and M.G. Kanatzidis, J. Am. Chem. Soc. 137, 11445 (2015), https://doi.org/10.1021/jacs.5b06658.

K.G. Lim, S. Ahn, Y.H. Kim, Y. Qi, and T.W. Lee, Energy Environ. Sci. 9, 932–939 (2016), https://doi.org/10.1039/C5EE03560K.

H. Kim, K.G. Lim, and T.W. Lee, Energy Environ. Sci. 9, 12–30 (2016), https://doi.org/10.1039/C5EE02194D.

F. Hao, K. Stoumpos, D. H. Cao, R. P. H. Chang, and M. Kanatzidis, Nature Photonics, 8(6), 489-494 (2014) https://doi.org/10.1038/nphoton.2014.82.

D.B. Mitzi, C.A. Field, Z. Schlesinger, and R.B. Laibowitz, J. Solid State Chem. 114, 159–163 (1995), https://doi.org/10.1006/jssc.1995.1023.

D.Y. Liu, M.K. Gangishetty, and T.L. Kelly, J. Mater. Chem. A, 2, 19873-19881 (2014), https://doi.org/10.1039/C4TA02637C.

N.K. Noel, D.S. Samuel, A. Antonio, W. Christian, G. Simone, H. Amir-Abbas, S. Aditya, E.E. Giles, K.P. Sandeep, B.J. Michael, P. Annamaria, M.H. Laura, and J.S. Henry, Energy Environ. Sci. 7, 3061-3068 (2014), https://doi.org/10.1039/c4ee01076k.

X. Li, J. Yang, Q. Jiang, W. Chu, D. Zhang, Z Zhou, and J. Xin, ACS Appl. Mater. Interfaces, 7b, 14926 (2017), https://doi.org/10.1021/acsami.7b14926.

G.A. Sepalage, S. Meyer, A. Pascoe, A.D. Scully, F. Huang, U. Bach, Y.B Cheng, and L. Spiccia, Adv. Funct. Mater. 25, 5650 5661 (2015), https://doi.org/10.1002/adfm.201502541.

Published
2021-04-30
Cited
How to Cite
Muhammed, O. A., Danladi, E., Boduku, P. H., Tasiu, J., Ahmad, M. S., & Usman, N. (2021). Modeling and Simulation of Lead-Free Perovskite Solar Cell Using SCAPS-1D. East European Journal of Physics, (2), 146-154. https://doi.org/10.26565/2312-4334-2021-2-12