Propagation of an Azimuthally Polarized Terahertz Laser Beams with a Phase Singularity

Keywords: Terahertz laser, Dielectric waveguide resonator, Spiral phase plate, Vortex beams, Azimuthal polarization, Radiation propagation

Abstract

Analytical expressions are derived to describe the nonparaxial diffraction of modes in a dielectric waveguide resonator for a terahertz laser. The study examines the interaction between azimuthally polarized TE0m (m = 1, 2, 3) modes and a spiral phase plate (SPP), accounting for its different topological charges (n). Using numerical modeling, the emerging physical properties of vortex beams are investigated when they propagate in free space. Vector integral Rayleigh-Sommerfeld transforms are used to study the propagation in the Fresnel zone of vortex laser beams excited by TE0m modes of a dielectric waveguide quasi-optical resonator when they are incident on a phase plate. In the studied modes, in the absence of a phase plate, the field exhibits a ring-shaped transverse intensity distribution along the propagation axis. In this case, the number of rings in the cross-section corresponds to the azimuthal number of modes, and the phase distributions for the transverse components of these modes have opposite signs. The use of a SPP with a topological charge n = 1 changes the structure of the beam field, forming an axial maximum in the transverse profile with an increase in the beam diameter at this maximum compared to the case without a phase plate. At the same time the phase structure of the field for transverse components acquires two-lobe symmetry. When using a SPP with a topological charge n = 2 for the TE01 mode the restoration of the ring-like field structure is observed and for the TE02 and TE03 modes the formation of regions of increased intensity is observed. In this case, the phase distributions of the field components for the TE01 and TE02 modes acquire a three-lobe spiral structure, whereas those for the TE03 mode acquire a multi-lobe spiral configuration.

Downloads

Download data is not yet available.

References

J. Freeman, E. Linfield, and A.G. Davies, “Terahertz frequency electronics and photonics: materials and devices,” Philosophical Transactions, 383(2296), 20230378 (2025). https://doi.org/10.1098/rsta.2023.0378

A. Rogalski, “Progress in performance development of room temperature direct terahertz detectors,” Journal of Infrared, Millimeter, and Terahertz Waves, 43(9), 709 (2022). https://doi.org/10.1007/s10762-022-00882-2

A. Leitenstorfer, A.S. Moskalenko, T. Kampfrath, et al., “The 2023 terahertz science and technology roadmap,” Journal of Physics D: Applied Physics, 56(22), 223001 (2023). https://doi.org/10.1088/1361-6463/acbe4c

D. Headland, Y. Monnai, D. Abbott, C. Fumeaux, and W. Withayachumnankul, “Tutorial: Terahertz beamforming, from concepts to realizations, ” Apl Photonics, 3(5), 051101 (2018). https://doi.org/10.1063/1.5011063

A. Siemion, “Terahertz diffractive optics-smart control over radiation,” Journal of Infrared, Millimeter, and Terahertz Waves, 40(5), 477 (2019). https://doi.org/10.1007/s10762-019-00581-5

A. Forbes, “Advances in orbital angular momentum lasers,” Journal of Lightwave Technology, 41(7), 2079 (2022). https://doi.org/10.1109/JLT.2022.3220509

H. Hao, H. Xiaoxue, G. Liping, X. Sixing, and W. Xiaolei, “Research progress of terahertz vector beams,” Opto-Electronic Engineering, 51(8), 240071 (2024). https://doi.org/10.12086/oee.2024.240071

J. He, T. Dong, B. Chi, and Y. Zhang, “Metasurfaces for terahertz wavefront modulation: a review,” Journal of Infrared, Millimeter, and Terahertz Waves, 41(6), 607 (2020). https://doi.org/10.1007/s10762-020-00677-3

H. Wang, Q. Song, Y. Cai, Q. Lin, X. Lu, H. Shangguan, Y. Ai, and S. Xu, “Recent advances in generation of terahertz vortex beams and their applications, ” Chin. Phys. B, 29(9), 097404 (2020). https://doi.org/10.1088/1674-1056/aba2df

J. Lamberg, F. Zarrinkhat, A. Tamminen, M. Baggio, J. Ala-Laurinaho, J. Rius, J. Romeu, E.E. Khaled, and Z. Taylor, “Wavefront-modified vector beams for THz cornea spectroscopy,” Optics Express, 31(24), 40293 (2023). https://doi.org/10.1364/OE.494460

S. Hu, L. Wei, Y. Long, S. Huang, B. Dai, L. Qiu, S. Zhuang, and D. Zhang, “Longitudinal polarization manipulation based on all-dielectric terahertz metasurfaces,” Optics Express, 32(5), 6963 (2024). https://doi.org/10.1364/OE.514410

H. Zhao, X. Wang, S. Liu, and Y. Zhang, “Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band,” Opto-Electronic Advances, 6(2), 220012 (2023). https://doi.org/10.29026/oea.2023.220012

J. Wätzel, J. Berakdar, and E.Y. Sherman, “Ultrafast entanglement switching and singlet–triplet transitions control via structured terahertz pulses, ” New Journal of Physics, 24(4), 043016 (2022). https://doi.org/10.1088/1367-2630/ac608a

D. Bongiovanni, D. Li, M. Goutsoulas, H. Wu, Y. Hu, D. Song, and Z. Chen, “Free-space realization of tunable pin-like optical vortex beams,” Photonics Research, 9(7), 1204 (2021). https://doi.org/10.1364/PRJ.420872

G. Wang, X. Weng, X. Kang, Z. Li, K. Chen, X. Gao, and S. Zhuang, “Free-space creation of a perfect vortex beam with fractional topological charge,” Optics Express, 31(4), 5757 (2023). https://doi.org/10.1364/OE.483304

X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, and B. Jia, “Recent advances on optical vortex generation,” Nanophotonics, 7(9), 1533 (2018). https://doi.org/10.1515/nanoph-2018-0072

A.A. Paraipan, D. Gonzalez‐Hernandez, I.V. Reddy, G. Balistreri, L. Zanotto, M. Shalaby, R. Morandotti, C. Liberale, and

L. Razzari “Scanless spectral imaging of terahertz vortex beams generated by high‐resolution 3d‐printed spiral phase plates,” Small Science, 4(12), 2400352 (2024). https://doi.org/10.1002/smsc.202400352

K. Miyamoto, K. Suizu, T. Akiba, and T. Omatsu, “Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate,” Applied Physics Letters, 104(26), 261104 (2014). https://doi.org/10.1063/1.4886407

D.T. Hodges, and T.S. Hartwick, “Waveguide laser for the far infrared (FIR) pumped by a CO2 laser, ” Applied Physics Letters, 23(5), 252 (1973). https://doi.org/10.1063/1.1654878

P. Chevalier, A. Armizhan, F. Wang, M. Piccardo, S.G. Johnson, F. Capasso, and H.O. Everitt, “Widely tunable compact terahertz gas lasers,” Science, 366(6467), 856 (2019). https://doi.org/10.1126/science.aay8683

A. Amirzhan, P. Chevalier, J. Rowlette, H.T. Stinson, M. Pushkarsky, T. Day, H.O. Everitt, and F. Capasso, “A quantum cascade laser-pumped molecular laser tunable over 1 THz,” APL Photonics, 7(1), 016107 (2022). https://doi.org/10.1063/5.0076310

M.-H. Mammez, Z. Buchanan, O. Pirali, et al., “Optically pumped terahertz molecular laser: Gain factor and validation up to 5.5 THz,” Adv. Photonics Res., 3(4), 2100263 (2022). https://doi.org/10.1002/adpr.202100263

R.L. Abrams, and A.N. Chester, “Resonator theory for hollow waveguide lasers,” Applied Optics, 13(9), 2117 (1974). https://doi.org/10.1364/AO.13.002117

G. Li, D. Wang, L. Fang, Z. Ran, and Q. Yan, “Improvement to beam quality of optically pumped terahertz gas lasers with hole-coupling resonators,” Optical Engineering, 58(2), 026104 (2019) https://doi.org/10.1117/1.OE.58.2.026104

O.V. Gurin, А.V. Degtyarev, M.N. Legenkiy, V.A. Maslov, V.A. Svich, V.S. Senyuta, and A.N. Topkov, “Generation of transverse modes with azimuthal polarization in a terahertz band waveguide laser,” Telecommunications and radio engineering, 73(20), 1819 (2014). https://doi.org/10.1615/TelecomRadEng.v73.i20.30

H. Zhou, X. Su, A. Minoofar, et al., “Utilizing multiplexing of structured THz beams carrying orbital-angular-momentum for high-capacity communications,” Optics Express, 30(14), 25418 (2022). https://doi.org/10.1364/OE.459720

H. Wang, and R. Piestun, “Azimuthal multiplexing 3D diffractive optics,” Scientific Reports, 10(1), 6438 (2020). https://doi.org/10.1038/s41598-020-63075-8

H. Ren, X. Li, and M. Gu, “Polarization-multiplexed multifocal arrays by a π-phase-step-modulated azimuthally polarized beam,” Optics Letters, 39(24), 6771 (2014). https://doi.org/10.1364/OL.39.006771

V.V. Kotlyar, and A.A. Kovalev, “Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization,” J. Opt. Soc. Am. A, 27(3), 372 (2010). https://doi.org/10.1364/JOSAA.27.000372

B. Gu, and Y. Cui, “Nonparaxial and paraxial focusing of azimuthal-variant vector beams,” Opt. Express, 20(16), 17684 (2012). https://doi.org/10.1364/OE.20.017684

Y. Zhang, L. Wang, and C. Zheng, “Vector propagation of radially polarized Gaussian beams diffracted by an axicon,” J. Opt. Soc. Am. A, 22(11), 2542 (2005). https://doi.org/10.1364/JOSAA.22.002542

E.A.J. Marcatilі, and R.A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J., 43(4), 1783 (1964). https://doi.org/10.1002/j.1538-7305.1964.tb04108.x

J.F. Nye, and M.V. Berry, “Dislocations in wave trains,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 336(1605), 165 (1974). https://doi.org/10.1098/rspa.1974.0012

B. Gu, and Y. Cui, “Nonparaxial and paraxial focusing of azimuthal-variant vector beams,” Opt. Express, 20(16), 17684 (2012). https://doi.org/10.1364/OE.20.017684

O.V. Gurin, A.V. Degtyarev, N.N. Dubinin, M.N. Legenkiy, V.A. Maslov, K.I. Muntean, V.N. Ryabykh, and V.S. Senyuta, “Formation of beams with nonuniform polarisation of radiation in a cw waveguide terahertz laser,” Quantum Electron., 51(4), 338 (2021). https://doi.org/10.1070/QEL17511

A.V. Degtyarev, M.M. Dubinin, O.V. Gurin, V.O. Maslov, K.I. Muntean, V.M. Ryabykh, V.S. Senyuta, and O.O. Svystunov, “Control over higher-order transverse modes in a waveguide-based quasi-optical resonator,” Radio Physics and Radio Astronomy, 27(2), 49 (2022). https://doi.org/ 10.15407/rpra22.02.49

Published
2025-12-08
Cited
How to Cite
Degtyarev, A. V., Dubinin, M. M., Maslov, V. A., Muntean, K. I., & Senyuta, V. S. (2025). Propagation of an Azimuthally Polarized Terahertz Laser Beams with a Phase Singularity. East European Journal of Physics, (4), 267-273. https://doi.org/10.26565/2312-4334-2025-4-24

Most read articles by the same author(s)